欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

深度学习框架TensorFlow学习与应用(七)——循环神经网络(RNN)应用于MNIST数据集分类

程序员文章站 2024-03-25 10:44:58
...

关于RNN的介绍可以参考:RNN介绍

下面将RNN用于前文所提到的MNIST手写数字识别中。

1.获取数据集

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("D:\BaiDu\MNIST_data",one_hot=True)
2.参数定义

# 输入图片是28*28
n_inputs = 28 #输入一行,一行有28个数据
max_time = 28 #一共28行
lstm_size = 100 #隐层单元
n_classes = 10 # 10个分类
batch_size = 50 #每批次50个样本
n_batch = mnist.train.num_examples // batch_size #计算一共有多少个批次
#这里的none表示第一个维度可以是任意的长度
x = tf.placeholder(tf.float32,[None,784])
#正确的标签
y = tf.placeholder(tf.float32,[None,10])
#初始化权值
weights = tf.Variable(tf.truncated_normal([lstm_size, n_classes], stddev=0.1))
#初始化偏置值
biases = tf.Variable(tf.constant(0.1, shape=[n_classes]))
3.定义RNN函数

#定义RNN网络
def RNN(X,weights,biases):
    # inputs=[batch_size, max_time, n_inputs]
    inputs = tf.reshape(X,[-1,max_time,n_inputs])
    #定义LSTM基本CELL
    from tensorflow.contrib import rnn 
    lstm_cell = rnn.BasicLSTMCell(lstm_size) 
    # final_state[0]是cell state
    # final_state[1]是hidden_state
    outputs,final_state = tf.nn.dynamic_rnn(lstm_cell,inputs,dtype=tf.float32)
    results = tf.nn.softmax(tf.matmul(final_state[1],weights) + biases)
    return results
4.优化与训练

#计算RNN的返回结果
prediction= RNN(x, weights, biases)  
#损失函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
#使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#把correct_prediction变为float32类型
#初始化
init = tf.global_variables_initializer()
5.执行会话

with tf.Session() as sess:
    sess.run(init)
    for epoch in range(6):
        for batch in range(n_batch):
            batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
        
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print ("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))

6.执行结果

Iter 0, Testing Accuracy= 0.733
Iter 1, Testing Accuracy= 0.8607
Iter 2, Testing Accuracy= 0.9006
Iter 3, Testing Accuracy= 0.9168
Iter 4, Testing Accuracy= 0.929
Iter 5, Testing Accuracy= 0.9374






相关标签: rnn