动手深度学习 task2(文本预处理+语言模型+循环神经网络)
1.文本预处理
文本预处理步骤:
- 读入文本
- 分词
- 建立字典,将每个词映射到一个唯一的索引(index)
- 将文本从词的序列转换为索引的序列,方便输入模型
读入文本的代码:
import collections
import re
def read_time_machine():
with open('/home/kesci/input/timemachine7163/timemachine.txt', 'r') as f:
lines = [re.sub('[^a-z]+', ' ', line.strip().lower()) for line in f]
return lines
lines = read_time_machine()
print('# sentences %d' % len(lines))
正则表达式的作用:
首先去除空格并且转换为小些,然后对不是a-z内的字符替换为空格;
re.sub的作用参考下述链接:
http://www.py3study.com/Article/details/id/9131.html
分词代码:
def tokenize(sentences, token='word'):
"""Split sentences into word or char tokens"""
if token == 'word':
return [sentence.split(' ') for sentence in sentences]
elif token == 'char':
return [list(sentence) for sentence in sentences]
else:
print('ERROR: unkown token type '+token)
tokens = tokenize(lines)
tokens[0:2]
分词有上述两种方法:(1)依照词之间的空格进行分词(2)依照单个字符进行分词(即a,b,c)
建立词典
class Vocab(object):
def __init__(self, tokens, min_freq=0, use_special_tokens=False):
counter = count_corpus(tokens) # :
self.token_freqs = list(counter.items())
self.idx_to_token = []
if use_special_tokens:
# padding, begin of sentence, end of sentence, unknown
self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3)
self.idx_to_token += ['', '', '', '']
else:
self.unk = 0
self.idx_to_token += ['']
self.idx_to_token += [token for token, freq in self.token_freqs
if freq >= min_freq and token not in self.idx_to_token]
self.token_to_idx = dict()
for idx, token in enumerate(self.idx_to_token):
self.token_to_idx[token] = idx
def __len__(self):
return len(self.idx_to_token)
def __getitem__(self, tokens):
if not isinstance(tokens, (list, tuple)):
return self.token_to_idx.get(tokens, self.unk)
return [self.__getitem__(token) for token in tokens]
def to_tokens(self, indices):
if not isinstance(indices, (list, tuple)):
return self.idx_to_token[indices]
return [self.idx_to_token[index] for index in indices]
def count_corpus(sentences):
tokens = [tk for st in sentences for tk in st]
return collections.Counter(tokens) # 返回一个字典,记录每个词的出现次数
上述代码的分析:
传入分好词的二维词语列表,然后初始化最小的词语频率(频率小于最小频率的词会被省略)。
首先计算出词频,然后进行id到词语的映射和词语到id的映射;
例子如下:
vocab = Vocab(tokens)
print(list(vocab.token_to_idx.items())[0:10])
输出:
[('', 0), ('the', 1), ('time', 2), ('machine', 3), ('by', 4), ('h', 5), ('g', 6), ('wells', 7), ('i', 8), ('traveller', 9)]
词转换为索引的代码:
for i in range(8, 10):
print('words:', tokens[i])
print('indices:', vocab[tokens[i]])
输出
语言模型和数据集
知识点
随机采样:
在随机采样中,每个样本是原始序列上任意截取的一段序列。相邻的两个随机小批量在原始序列上的位置不一定相毗邻。
其中批量大小batch_size
是每个小批量的样本数,num_steps
是每个样本所包含的时间步数。
在随机采样中,每个样本是原始序列上任意截取的一段序列,相邻的两个随机小批量在原始序列上的位置不一定相毗邻。
因此,我们无法用一个小批量最终时间步的隐藏状态来初始化下一个小批量的隐藏状态。在训练模型时,每次随机采样前都需要重新初始化隐藏状态。
import torch
import random
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):
# 减1是因为对于长度为n的序列,X最多只有包含其中的前n - 1个字符
num_examples = (len(corpus_indices) - 1) // num_steps # 下取整,得到不重叠情况下的样本个数
example_indices = [i * num_steps for i in range(num_examples)] # 每个样本的第一个字符在corpus_indices中的下标
random.shuffle(example_indices)
def _data(i):
# 返回从i开始的长为num_steps的序列
return corpus_indices[i: i + num_steps]
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
for i in range(0, num_examples, batch_size):
# 每次选出batch_size个随机样本
batch_indices = example_indices[i: i + batch_size] # 当前batch的各个样本的首字符的下标
X = [_data(j) for j in batch_indices]
Y = [_data(j + 1) for j in batch_indices]
yield torch.tensor(X, device=device), torch.tensor(Y, device=device)
代码分析:
首选计算出可以产生的样本个数;然后计算出每个样本的第一个字符下标;并且对取出的下标进行随机打乱;最后利用循环取出各个batch。
相邻采样:
在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。
def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
corpus_len = len(corpus_indices) // batch_size * batch_size # 保留下来的序列的长度
corpus_indices = corpus_indices[: corpus_len] # 仅保留前corpus_len个字符
indices = torch.tensor(corpus_indices, device=device)
indices = indices.view(batch_size, -1) # resize成(batch_size, )
batch_num = (indices.shape[1] - 1) // num_steps
for i in range(batch_num):
i = i * num_steps
X = indices[:, i: i + num_steps]
Y = indices[:, i + 1: i + num_steps + 1]
yield X, Y
代码分析:
随机采样的执行结果:
相邻采样的结果:
循环神经网络
裁剪梯度:
代码:
def grad_clipping(params, theta, device):
norm = torch.tensor([0.0], device=device)
for param in params:
norm += (param.grad.data ** 2).sum()
norm = norm.sqrt().item()
if norm > theta:
for param in params:
param.grad.data *= (theta / norm)
困惑度:
关键代码:
num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
# num_inputs: d
# num_hiddens: h, 隐藏单元的个数是超参数
# num_outputs: q
def get_params():
def _one(shape):
param = torch.zeros(shape, device=device, dtype=torch.float32)
nn.init.normal_(param, 0, 0.01)
return torch.nn.Parameter(param)
# 隐藏层参数
W_xh = _one((num_inputs, num_hiddens))
W_hh = _one((num_hiddens, num_hiddens))
b_h = torch.nn.Parameter(torch.zeros(num_hiddens, device=device))
# 输出层参数
W_hq = _one((num_hiddens, num_outputs))
b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device))
return (W_xh, W_hh, b_h, W_hq, b_q)
def rnn(inputs, state, params):
# inputs和outputs皆为num_steps个形状为(batch_size, vocab_size)的矩阵
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
H = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(H, W_hh) + b_h)
Y = torch.matmul(H, W_hq) + b_q
outputs.append(Y)
return outputs, (H,)
def init_rnn_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), )
print(X.shape)
print(num_hiddens)
print(vocab_size)
state = init_rnn_state(X.shape[0], num_hiddens, device)
inputs = to_onehot(X.to(device), vocab_size)
params = get_params()
outputs, state_new = rnn(inputs, state, params)
print(len(inputs), inputs[0].shape)
print(len(outputs), outputs[0].shape)
print(len(state), state[0].shape)
print(len(state_new), state_new[0].shape)
torch.Size([2, 5])
256
1027
5 torch.Size([2, 1027])
5 torch.Size([2, 1027])
1 torch.Size([2, 256])
1 torch.Size([2, 256])
代码分析:
其中X为batch_size时间步数
隐藏层状态256;为2256;
inputs为21027;1027为词典的维度;
outputs为2256
最后一个隐藏状态为2*256;256为隐藏层的单元个数。
def train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
vocab_size, device, corpus_indices, idx_to_char,
char_to_idx, is_random_iter, num_epochs, num_steps,
lr, clipping_theta, batch_size, pred_period,
pred_len, prefixes):
if is_random_iter:
data_iter_fn = d2l.data_iter_random
else:
data_iter_fn = d2l.data_iter_consecutive
params = get_params()
loss = nn.CrossEntropyLoss()
for epoch in range(num_epochs):
if not is_random_iter: # 如使用相邻采样,在epoch开始时初始化隐藏状态
state = init_rnn_state(batch_size, num_hiddens, device)
l_sum, n, start = 0.0, 0, time.time()
data_iter = data_iter_fn(corpus_indices, batch_size, num_steps, device)
for X, Y in data_iter:
if is_random_iter: # 如使用随机采样,在每个小批量更新前初始化隐藏状态
state = init_rnn_state(batch_size, num_hiddens, device)
else: # 否则需要使用detach函数从计算图分离隐藏状态
for s in state:
s.detach_()
# inputs是num_steps个形状为(batch_size, vocab_size)的矩阵
inputs = to_onehot(X, vocab_size)
# outputs有num_steps个形状为(batch_size, vocab_size)的矩阵
(outputs, state) = rnn(inputs, state, params)
# 拼接之后形状为(num_steps * batch_size, vocab_size)
outputs = torch.cat(outputs, dim=0)
# Y的形状是(batch_size, num_steps),转置后再变成形状为
# (num_steps * batch_size,)的向量,这样跟输出的行一一对应
y = torch.flatten(Y.T)
# 使用交叉熵损失计算平均分类误差
l = loss(outputs, y.long())
# 梯度清0
if params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward()
grad_clipping(params, clipping_theta, device) # 裁剪梯度
d2l.sgd(params, lr, 1) # 因为误差已经取过均值,梯度不用再做平均
l_sum += l.item() * y.shape[0]
n += y.shape[0]
if (epoch + 1) % pred_period == 0:
print('epoch %d, perplexity %f, time %.2f sec' % (
epoch + 1, math.exp(l_sum / n), time.time() - start))
for prefix in prefixes:
print(' -', predict_rnn(prefix, pred_len, rnn, params, init_rnn_state,
num_hiddens, vocab_size, device, idx_to_char, char_to_idx))
代码分析:
对于相邻采样,需要在每个epoch之前进行初始化隐藏层状态,在每个batch时候不用再进行初始化。原因在于对于相邻采样,相邻batch之间的序列是连续的,上一个batch的隐藏层状态可以用于下一个batch;但是基于梯度爆炸的影响,需要在每个batch的时候把隐藏层状态从图中隔离出来。