欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

程序员文章站 2023-08-21 09:39:01
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了 ......
Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 4255  Solved: 2582
[][][]

Description

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

  第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

Output

  不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

 

  有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 

和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

Source

这题非常的妙啊。

第一眼看过去应该是P♂lya定理,但是考虑到P♂lya定理是用颜色数做底数计算的,而此题有颜色数的限制,

所以我们考虑它最原始的版本—Burnside引理

这题置换的个数直接给出了($M$)

因此我们只需要求出每个置换中不动点的方案再乘上$M$Z在模$P$意义下的逆元就行了

考虑如何求每个置换中的不动点

联想P♂lya定理。我们在每个循环节中都必须要放同样的颜色,这题也是一样的,只不过多了个数的限制

那么我们直接把个数的限制当做状态dp就行了

设$f[i][a][b]$表示前$i$个循环节,用了$a$个红颜色,$b$个蓝颜色,$c$个黄颜色

转移的时候判断当前放的个数时候大于循环节长度,背包转移

注意最初的状态也算一种方案

#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long  
const int MAXN = 1e5 + 10;
using namespace std;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int Sr, Sb, Sg, N, M, mod, change[MAXN];
int f[61][21][21], len[101], vis[101], num = 0; // f[i][j][k]前i个循环节,用了j个红,k个蓝, i - j - k个绿 len[i]第i个循环节有几个元素 
int F(int *a) {
    memset(f, 0, sizeof(f));
    memset(len, 0, sizeof(len));
    memset(vis, 0, sizeof(vis));
    num = 0;
    for(int i = 1; i <= N; i++) {
        if(!vis[i]) {
            int cur = i; num++;
            while(!vis[i]) len[num]++, vis[i] = 1,  i = a[i];
        }
    }
    f[0][0][0] = 1;
    for(int i = 1; i <= num; i++) {
        for(int a = 0; a <= Sr; a++) {
            for(int b = 0; b <= Sb; b++) {
                int c = i - a - b, sum = 0;
                if(c < 0 || c > Sg) continue;
                if(a >= len[i]) sum = (sum + f[i - 1][a - len[i]][b] ) % mod;
                if(b >= len[i]) sum = (sum + f[i - 1][a][b - len[i]] ) % mod;
                if(c >= len[i]) sum = (sum + f[i - 1][a][b]) % mod;
                f[i][a][b] = sum % mod;
            }
        }
    }
    return f[num][Sr][Sb] % mod;
}
int inv(int a, int p, int mod) {
    int base = 1;
    while(p) {
        if(p & 1) base = (base * a) % mod;
        a = (a * a) % mod; p >>= 1;
    }
    return base % mod;
}
main() {
    Sr = read(); Sb = read(); Sg = read(); M = read(), mod = read();
    N = Sr + Sb + Sg;
    int ans = 0;
    for(int i = 1; i <= M; i++) {
        for(int j = 1; j <= N; j++) change[j] = read();
        ans += F(change);
    }
    for(int i = 1; i <= N; i++) change[i] = i;
    ans += F(change);
    printf("%d", ans * inv(M + 1, mod - 2, mod) % mod);
}