欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

erlang mnesia的dirty_write详细分析

程序员文章站 2022-07-15 11:42:31
...

mnesia作为一个天生分布式的数据库,为保证各个节点数据的一致性,会对于每个非读操作进行节点间的数据同步。

dirty_write也是要同步数据的,他和普通写操作的区别在于:

1.对操作不加锁。

2.同步数据请求不要求回执。

这样就会大大的增强操作的执行效率。在调用dirty_write后,mnesia会给除自己以外的所有联通节点发送消息,告诉他们应该执行的操作,然后自己再执行mnesia_tm:do_dirty。其他节点收到同步数据的请求后,也会调用mnesia_tm:do_dirty。

然后我做了一下测试分别是在不同节点数的情况下,执行100000个并发进程去dirty_write同一个mnesia表,结果如下:

1.当单独一个节点时,并发100000个进程去脏写mnesia,平均每次的耗时是18微秒左右。

2.但是2个节点的话,并发100000个进程去脏写mnesia,平均每次的耗时是54微秒左右。

3.而3个节点的话,并发100000个进程去脏写mnesia,平均每次的耗时是82微秒左右。

也就是说,发送同步消息的消耗会随着节点数的上升而提高。如果我们的项目节点书在10以上的时候,整个一个do_dirty操作会高到不能忍受的地步,这该怎么办呢?

要想知道解决办法我们还要在分析一下dirty_write的流程来找到哪里是整个操作的瓶颈。

1.最开始猜测是发送消息多个节点多了20-30微秒,可是实际经过我的测试,一个节点向另一个节点发消息,10万并发,平均2微秒左右。那就不对了,多余的10多微秒都干嘛去了呢?为了确认是否是发送消息影响了整个流程,我改了mnesia_tm这个module的代码,把发送消息的代码注释掉了,然后重复上面的测试,3个节点的情况下,平均耗时缩小到了25微秒左右。也就是说确实是发送消息占用了多余的时间。那为什么单独测试消耗的时间很小呢,我猜测应该是单独测并发多少万,如果操作简单的话,实际上同时运行的进程数很少,因为有可能第1000个进程还没启动第一个进程就运行完毕了呢,这样的话同时并发根本到不了1000以上,所以测试并发消息发送的那个测试并不准确。而mnesia的测试,由于整个流程的占用时间很长,所以同时并发的进程数可能达到了几万,那么同时消息发送可能达到几万,那么占用时间就相应的增加了。结论就是erlang的send操作,如果并发量越大,那么每个send操作占用的时间越长。所以发送消息这边没法提高速度,现有情况已经是最优的了。

2.那么剩下来能优化的地方就是mnesia_tm:do_dirty这方面了,因为所有的节点包括本地节点都要用do_dirty来操作ets表更新数据,这方面可以通过同时操作多个ets表来避免阻塞。也就是分表。原来读写一张表变成读写多个同样表结构的表。通过实验测试:

1.还是3个节点,并且分3张表,并发100000个进程去脏写mnesia,平均每次的耗时是54微秒左右。

2.还是3个节点,并且分4张表,并发100000个进程去脏写mnesia,平均每次的耗时是28微秒左右。

效率有明显的提升。说明这个方法有效。

 

下面是测试的代码:

测试分表性能和多节点性能:

-module (test_mnesia_split).

-export ([start/0, dw/0, tdw/0, stop/0, dw1/0, tdw1/0]).

-record (test_mnesia, {userid, pid}).
-record (test_mnesia1, {userid, pid}).
-record (test_mnesia2, {userid, pid}).
-record (test_mnesia3, {userid, pid}).

start() ->
    NodeList = node_list(),
    rpc_call(mnesia, stop, [], stopped),
    mnesia:delete_schema(NodeList),
    mnesia:create_schema(NodeList),
    rpc_call(mnesia, start, [], ok),
    {atomic,ok} = mnesia:create_table(test_mnesia, [{ram_copies, NodeList},
                                                    {attributes, record_info(fields, test_mnesia)}]),
    {atomic,ok} = mnesia:create_table(test_mnesia1, [{ram_copies, NodeList},
                                                    {attributes, record_info(fields, test_mnesia1)}]),
    {atomic,ok} = mnesia:create_table(test_mnesia2, [{ram_copies, NodeList},
                                                    {attributes, record_info(fields, test_mnesia2)}]),
    {atomic,ok} = mnesia:create_table(test_mnesia3, [{ram_copies, NodeList},
                                                    {attributes, record_info(fields, test_mnesia3)}]),
    {atomic,ok} = mnesia:add_table_index(test_mnesia, pid).
    % rpc_call(mnesia, stop, [], stopped).

stop() ->
    NodeList = node_list(),
    rpc_call(mnesia, stop, [], stopped),
    mnesia:delete_schema(NodeList).


dw() ->
    <<A:32, B:32, C:32>> = crypto:strong_rand_bytes(12),
    random:seed (A, B, C),
    Random = random:uniform(3),
    UserId = <<"user_1@android">>,
    mnesia:dirty_write(#test_mnesia{userid = UserId, pid = UserId}).

tdw() ->
    tc:ct(?MODULE, dw, [], 100000).

dw1() ->
    <<A:32, B:32, C:32>> = crypto:strong_rand_bytes(12),
    random:seed (A, B, C),
    Random = random:uniform(3),
    UserId = <<"user_1@android">>,
    case Random of
        1 ->
            mnesia:dirty_write(#test_mnesia1{userid = UserId, pid = UserId});
        2 ->
            mnesia:dirty_write(#test_mnesia2{userid = UserId, pid = UserId});
        3 ->
            mnesia:dirty_write(#test_mnesia3{userid = UserId, pid = UserId});
        _ ->
            mnesia:dirty_write(#test_mnesia{userid = UserId, pid = UserId})
    end.

tdw1() ->
    tc:ct(?MODULE, dw1, [], 100000).



%% ===================================================================
%% Internal functions
%% ===================================================================
node_list() ->
    [node() | nodes()].

rpc_call(Module, Function, Args, Result) ->
    rpc_call(node_list(), Module, Function, Args, Result).
rpc_call([H|T], Module, Function, Args, Result) ->
    Result = rpc:call(H, Module, Function, Args),
    rpc_call(T, Module, Function, Args, Result);
rpc_call([], _, _, _, _) ->
    ok.

 

 

测试消息发送的性能:

-module (ts).

-export ([start_rec/0, send/0, start/1]).

start_rec() ->
    Pid = spawn(fun() -> rec() end),
    case whereis(rec) of
        undefined ->
            register(rec, Pid);
        _ ->
            ok
    end.


rec() ->
    receive
        stop ->
            stop;
        _ ->
            rec()
    end.

send() ->
    send(1000).

send(N) when N > 1 ->
    {rec, 's2@192.168.1.137'} ! a,
    send(N - 1);
send(1) ->
    {Microsecond, _} = timer:tc(erlang, send, [{rec, 's2@192.168.1.137'},a]),
    collector ! {result, Microsecond},
    ok.

collector(Max, Min, Sum, N, I, List) when N >= I ->
    receive
        {result, Microsecond} ->
            NewSum = Sum + Microsecond,
            if
                Max == 0 ->
                    NewMax = NewMin = Microsecond;
                Max < Microsecond ->
                    NewMax = Microsecond,
                    NewMin = Min;
                Min > Microsecond ->
                    NewMax = Max,
                    NewMin = Microsecond;
                true ->
                    NewMax = Max,
                    NewMin = Min
            end,
            collector(NewMax, NewMin, NewSum, N, I + 1, [Microsecond|List])
    end;
collector(Max, Min, Sum, N, _, List) ->
    Aver = Sum / N,
    {Less5, Less10, Less20, Less50, Less100, Less500, Other} = distribution(List, Aver),
    {Max, Min, Sum, Aver, Less5, Less10, Less20, Less50, Less100, Less500, Other}.

distribution(List, Aver) ->
    distribution(List, Aver, 0, 0, 0, 0, 0, 0, 0).
distribution([H|T], Aver, Less5, Less10, Less20, Less50, Less100, Less500, Other) ->
    if
        H < 5 ->
            distribution(T, Aver, Less5 + 1, Less10, Less20, Less50, Less100, Less500, Other);
        H < 10 ->
            distribution(T, Aver, Less5, Less10 + 1, Less20, Less50, Less100, Less500, Other);
        H < 20 ->
            distribution(T, Aver, Less5, Less10, Less20 + 1, Less50, Less100, Less500, Other);
        H < 50 ->
            distribution(T, Aver, Less5, Less10, Less20, Less50 + 1, Less100, Less500, Other);
        H < 100 ->
            distribution(T, Aver, Less5, Less10, Less20, Less50, Less100 + 1, Less500, Other);
        H < 500 ->
            distribution(T, Aver, Less5, Less10, Less20, Less50, Less100, Less500 + 1, Other);
        true ->
            distribution(T, Aver, Less5, Less10, Less20, Less50, Less100, Less500, Other + 1)
    end;
distribution([], _Aver, Less5, Less10, Less20, Less50, Less100, Less500, Other) ->
    {Less5, Less10, Less20, Less50, Less100, Less500, Other}.

start(N) ->
    case whereis(collector) of
        undefined ->
            register(collector, self());
        _ ->
            ok
    end,
    loop(N),
    {Max, Min, Sum, Aver, Less5, Less10, Less20, Less50, Less100, Less500, Other} = collector(0, 0, 0, N, 1, []),
    io:format ("=====================~n"),
    io:format ("spawn [~p] processes of erlang:send/3:~n", [N]),
    io:format ("Maximum: ~p(μs)\t~p(s)~n", [Max, Max / 1000000]),
    io:format ("Minimum: ~p(μs)\t~p(s)~n", [Min, Min / 1000000]),
    io:format ("Sum: ~p(μs)\t~p(s)~n", [Sum, Sum / 1000000]),
    io:format ("Average: ~p(μs)\t~p(s)~n", [Aver, Aver / 1000000]),
    io:format ("0   <= x < 5:   ~p~n", [Less5]),
    io:format ("5   <= x < 10:  ~p~n", [Less10]),
    io:format ("10  <= x < 20:  ~p~n", [Less20]),
    io:format ("20  <= x < 50:  ~p~n", [Less50]),
    io:format ("50  <= x < 100: ~p~n", [Less100]),
    io:format ("100 <= x < 500: ~p~n", [Less500]),
    io:format ("x => 500:       ~p~n", [Other]),
    io:format ("=====================~n").

loop(N) when N > 0 ->
    spawn(fun ts:send/0),
    loop(N - 1);
loop(0) ->
    ok.