欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

如何区分并记住常见的几种 Normalization 算法(转)

程序员文章站 2022-07-14 18:49:40
...

神经网络中有各种归一化算法:Batch Normalization (BN)、Layer Normalization (LN)、Instance Normalization (IN)、Group Normalization (GN)。从公式看它们都差不多,如 (1) 所示:无非是减去均值,除以标准差,再施以线性映射。

如何区分并记住常见的几种 Normalization 算法(转)

image.png

这些归一化算法的主要区别在于操作的 feature map 维度不同。如何区分并记住它们,一直是件令人头疼的事。本文目的不是介绍各种归一化方式在理论层面的原理或应用场景,而是结合 pytorch 代码,介绍它们的具体操作,并给出一个方便记忆的类比。

Batch Normalization

 

 

Batch Normalization (BN) 是最早出现的,也通常是效果最好的归一化方式。feature map:

如何区分并记住常见的几种 Normalization 算法(转)

image.png

包含 N 个样本,每个样本通道数为 C,高为 H,宽为 W。对其求均值和方差时,将在 N、H、W上操作,而保留通道 C 的维度。具体来说,就是把第1个样本的第1个通道,加上第2个样本第1个通道 ...... 加上第 N 个样本第1个通道,求平均,得到通道 1 的均值(注意是除以 N×H×W 而不是单纯除以 N,最后得到的是一个代表这个 batch 第1个通道平均值的数字,而不是一个 H×W 的矩阵)。求通道 1 的方差也是同理。对所有通道都施加一遍这个操作,就得到了所有通道的均值和方差。具体公式为:

如何区分并记住常见的几种 Normalization 算法(转)

image.png

 

 

**如果把

如何区分并记住常见的几种 Normalization 算法(转)

image.png

类比为一摞书,这摞书总共有 N 本,每本有 C 页,每页有 H 行,每行 W 个字符。BN 求均值时,相当于把这些书按页码一一对应地加起来(例如第1本书第36页,第2本书第36页......),再除以每个页码下的字符总数:N×H×W,因此可以把 BN 看成求“平均书”的操作(注意这个“平均书”每页只有一个字),求标准差时也是同理。**

可以在 pytorch 下自己写一个 BN ,看看和官方的版本是否一致,以检验上述理解是否正确:

 

# coding=utf8
import torch
from torch import nn

# track_running_stats=False,求当前 batch 真实平均值和标准差,
# 而不是更新全局平均值和标准差
# affine=False, 只做归一化,不乘以 gamma 加 beta(通过训练才能确定)
# num_features 为 feature map 的 channel 数目
# eps 设为 0,让官方代码和我们自己的代码结果尽量接近
bn = nn.BatchNorm2d(num_features=3, eps=0, affine=False, track_running_stats=False)

# 乘 10000 为了扩大数值,如果出现不一致,差别更明显
x = torch.rand(10, 3, 5, 5)*10000 
official_bn = bn(x)

# 把 channel 维度单独提出来,而把其它需要求均值和标准差的维度融合到一起
x1 = x.permute(1,0,2,3).view(3, -1)

mu = x1.mean(dim=1).view(1,3,1,1)
# unbiased=False, 求方差时不做无偏估计(除以 N-1 而不是 N),和原始论文一致
# 个人感觉无偏估计仅仅是数学上好看,实际应用中差别不大
std = x1.std(dim=1, unbiased=False).view(1,3,1,1)

my_bn = (x-mu)/std

diff=(official_bn-my_bn).sum()
print('diff={}'.format(diff)) # 差别是 10-5 级的,证明和官方版本基本一致

Layer Normalization

BN 的一个缺点是需要较大的 batchsize 才能合理估训练数据的均值和方差,这导致内存很可能不够用,同时它也很难应用在训练数据长度不同的 RNN 模型上Layer Normalization (LN) 的一个优势是不需要批训练,在单条数据内部就能归一化

 

 

对于

如何区分并记住常见的几种 Normalization 算法(转)

image.png

,LN 对每个样本的 C、H、W 维度上的数据求均值和标准差,保留 N 维度。其均值和标准差公式为:

如何区分并记住常见的几种 Normalization 算法(转)

image.png

继续采用上一节的类比,把一个 batch 的 feature 类比为一摞书。LN 求均值时,相当于把每一本书的所有字加起来,再除以这本书的字符总数:C×H×W,即求整本书的“平均字”,求标准差时也是同理。

如下代码对比了 pytorch 官方 API 计算 LN,和依据原理逐步计算 LN 得到的结果:

 

import torch
from torch import nn

x = torch.rand(10, 3, 5, 5)*10000

# normalization_shape 相当于告诉程序这本书有多少页,每页多少行多少列
# eps=0 排除干扰
# elementwise_affine=False 不作映射
# 这里的映射和 BN 以及下文的 IN 有区别,它是 elementwise 的 affine,
# 即 gamma 和 beta 不是 channel 维的向量,而是维度等于 normalized_shape 的矩阵
ln = nn.LayerNorm(normalized_shape=[3, 5, 5], eps=0, elementwise_affine=False)

official_ln = ln(x)

x1 = x.view(10, -1)
mu = x1.mean(dim=1).view(10, 1, 1, 1)
std = x1.std(dim=1,unbiased=False).view(10, 1, 1, 1)

my_ln = (x-mu)/std

diff = (my_ln-official_ln).sum()

print('diff={}'.format(diff)) # 差别和官方版本数量级在 1e-5

Instance Normalization

Instance Normalization (IN) 最初用于图像的风格迁移。作者发现,在生成模型中, feature map 的各个 channel 的均值和方差会影响到最终生成图像的风格,因此可以先把图像在 channel 层面归一化,然后再用目标风格图片对应 channel 的均值和标准差“去归一化”,以期获得目标图片的风格。IN 操作也在单个样本内部进行,不依赖 batch。

 

 

对于

如何区分并记住常见的几种 Normalization 算法(转)

image.png

,IN 对每个样本的 H、W 维度的数据求均值和标准差,保留 N 、C 维度,也就是说,它只在 channel 内部求均值和标准差,其公式为:

如何区分并记住常见的几种 Normalization 算法(转)

image.png

IN 求均值时,相当于把一页书中所有字加起来,再除以该页的总字数:H×W,即求每页书的“平均字”,求标准差时也是同理。

如下代码对比了 pytorch 官方 API 计算 IN,和依据原理逐步计算 IN 得到的结果:

 

import torch
from torch import nn

x = torch.rand(10, 3, 5, 5) * 10000

# track_running_stats=False,求当前 batch 真实平均值和标准差,
# 而不是更新全局平均值和标准差
# affine=False, 只做归一化,不乘以 gamma 加 beta(通过训练才能确定)
# num_features 为 feature map 的 channel 数目
# eps 设为 0,让官方代码和我们自己的代码结果尽量接近
In = nn.InstanceNorm2d(num_features=3, eps=0, affine=False, track_running_stats=False)

official_in = In(x)

x1 = x.view(30, -1)
mu = x1.mean(dim=1).view(10, 3, 1, 1)
std = x1.std(dim=1, unbiased=False).view(10, 3, 1, 1)

my_in = (x-mu)/std

diff = (my_in-official_in).sum()
print('diff={}'.format(diff)) # 误差量级在 1e-5

Group Normalization

Group Normalization (GN) 适用于占用显存比较大的任务,例如图像分割。对这类任务,可能 batchsize 只能是个位数,再大显存就不够用了。而当 batchsize 是个位数时,BN 的表现很差,因为没办法通过几个样本的数据量,来近似总体的均值和标准差。GN 也是独立于 batch 的,它是 LN 和 IN 的折中。正如提出该算法的论文展示的:

如何区分并记住常见的几种 Normalization 算法(转)

image

GN 计算均值和标准差时,把每一个样本 feature map 的 channel 分成 G 组,每组将有 C/G 个 channel,然后将这些 channel 中的元素求均值和标准差。各组 channel 用其对应的归一化参数独立地归一化。

如何区分并记住常见的几种 Normalization 算法(转)

image.png

继续用书类比。GN 相当于把一本 C 页的书平均分成 G 份,每份成为有 C/G 页的小册子,求每个小册子的“平均字”和字的“标准差”。

如下代码对比了 pytorch 官方 API 计算 GN,和依据原理逐步计算 GN 得到的结果:

 

import torch
from torch import nn

x = torch.rand(10, 20, 5, 5)*10000

# 分成 4 个 group
# 其余设定和之前相同
gn = nn.GroupNorm(num_groups=4, num_channels=20, eps=0, affine=False)
official_gn = gn(x)

# 把同一 group 的元素融合到一起
x1 = x.view(10, 4, -1)
mu = x1.mean(dim=-1).reshape(10, 4, -1)
std = x1.std(dim=-1).reshape(10, 4, -1)

x1_norm = (x1-mu)/std
my_gn = x1_norm.reshape(10, 20, 5, 5)

diff = (my_gn-official_gn).sum()

print('diff={}'.format(diff)) # 误差在 1e-4 级

总结

 

 

这里再重复一下上文的类比。如果把

如何区分并记住常见的几种 Normalization 算法(转)

image.png

类比为一摞书,这摞书总共有 N 本,每本有 C 页,每页有 H 行,每行 W 个字符。

计算均值时,

  • BN 相当于把这些书按页码一一对应地加起来(例如:第1本书第36页,加第2本书第36页......),再除以每个页码下的字符总数:N×H×W,因此可以把 BN 看成求“平均书”的操作(注意这个“平均书”每页只有一个字)
  • LN 相当于把每一本书的所有字加起来,再除以这本书的字符总数:C×H×W,即求整本书的“平均字”
  • IN 相当于把一页书中所有字加起来,再除以该页的总字数:H×W,即求每页书的“平均字”
  • GN 相当于把一本 C 页的书平均分成 G 份,每份成为有 C/G 页的小册子,对这个 C/G 页的小册子,求每个小册子的“平均字”

计算方差同理。

 

 

此外,还需要注意它们的映射参数

如何区分并记住常见的几种 Normalization 算法(转)

image.png

 

 

的区别:对于 BN,IN,GN, 其

如何区分并记住常见的几种 Normalization 算法(转)

image.png

 

 

都是维度等于通道数 C 的向量。而对于 LN,其

如何区分并记住常见的几种 Normalization 算法(转)

image.png

都是维度等于 normalized_shape 的矩阵。

最后,BN 和 IN 可以设置参数: momentumtrack_running_stats来获得在全局数据上更准确的 running mean 和 running std。而 LN 和 GN 只能计算当前 batch 内数据的真实均值和标准差。