欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

TextCNN的PyTorch实现

程序员文章站 2022-07-12 07:58:57
本文主要介绍一篇将CNN应用到NLP领域的一篇论文 Convolutional Neural Networks for Sentence Classification,然后给出 PyTorch 实现论文比较短,总体流程也不复杂,最主要的是下面这张图,只要理解了这张图,就知道如何写代码了。如果你不了解CNN,请先看我的这篇文章CS231n笔记:通俗理解CNN下图的feature map是将一句话中的各个词通过WordEmbedding得到的,feature map的宽为embedding的维度,长为一句...

本文主要介绍一篇将CNN应用到NLP领域的一篇论文 Convolutional Neural Networks for Sentence Classification,然后给出 PyTorch 实现

论文比较短,总体流程也不复杂,最主要的是下面这张图,只要理解了这张图,就知道如何写代码了。如果你不了解CNN,请先看我的这篇文章CS231n笔记:通俗理解CNN

TextCNN的PyTorch实现

下图的feature map是将一句话中的各个词通过WordEmbedding得到的,feature map的宽为embedding的维度,长为一句话的单词数量。例如下图中,很明显就是用一个6维的向量去编码每个词,并且一句话中有9个词

之所以有两张feature map,你可以理解为batchsize为2

其中,红色的框代表的就是卷积核。而且很明显可以看出,这是一个长宽不等的卷积核。有意思的是,卷积核的宽可以认为是n-gram,比方说下图卷积核宽为2,所以同时考虑了"wait"和"for"两个单词的词向量,因此可以认为该卷积是一个类似于bigram的模型

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9k0V91qc-1593652373824)(https://i.loli.net/2020/06/25/F5GjQbMdR3WgukT.png#shadow)]

后面的部分就是传统CNN的步骤,激活、池化、Flatten,没什么好说的

TextCNN的PyTorch实现

代码实现(PyTorch版)

源码来自于 nlp-tutorial,我在其基础上进行了修改(原本的代码感觉有很多问题)

'''
  code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
'''
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
import torch.nn.functional as F

dtype = torch.FloatTensor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

下面代码就是定义一些数据,以及设置一些常规参数

# 3 words sentences (=sequence_length is 3)
sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
labels = [1, 1, 1, 0, 0, 0]  # 1 is good, 0 is not good.

# TextCNN Parameter
embedding_size = 2
sequence_length = len(sentences[0]) # every sentences contains sequence_length(=3) words
num_classes = len(set(labels))  # num_classes=2
batch_size = 3

word_list = " ".join(sentences).split()
vocab = list(set(word_list))
word2idx = {w: i for i, w in enumerate(vocab)}
vocab_size = len(vocab)

数据预处理

def make_data(sentences, labels):
  inputs = []
  for sen in sentences:
      inputs.append([word2idx[n] for n in sen.split()])

  targets = []
  for out in labels:
      targets.append(out) # To using Torch Softmax Loss function
  return inputs, targets

input_batch, target_batch = make_data(sentences, labels)
input_batch, target_batch = torch.LongTensor(input_batch), torch.LongTensor(target_batch)

dataset = Data.TensorDataset(input_batch, target_batch)
loader = Data.DataLoader(dataset, batch_size, True)

构建模型

class TextCNN(nn.Module):
    def __init__(self):
        super(TextCNN, self).__init__()
        self.W = nn.Embedding(vocab_size, embedding_size)
        output_channel = 3
        self.conv = nn.Sequential(
            # conv : [input_channel(=1), output_channel, (filter_height, filter_width), stride=1]
            nn.Conv2d(1, output_channel, (2, embedding_size)),
            nn.ReLU(),
            # pool : ((filter_height, filter_width))
            nn.MaxPool2d((2, 1)),
        )
        # fc
        self.fc = nn.Linear(output_channel, num_classes)

    def forward(self, X):
      '''
      X: [batch_size, sequence_length]
      '''
      batch_size = X.shape[0]
      embedding_X = self.W(X) # [batch_size, sequence_length, embedding_size]
      embedding_X = embedding_X.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size]
      conved = self.conv(embedding_X) # [batch_size, output_channel*1*1]
      flatten = conved.view(batch_size, -1)
      output = self.fc(flatten)
      return output

下面详细介绍一下数据在网络中流动的过程中维度的变化。输入数据是个矩阵,矩阵维度为[batch_size, seqence_length],输入矩阵的数字代表的是某个词在整个词库中的索引(下标)

首先通过Embedding层,也就是查表,将每个索引转为一个向量,比方说12可能会变成[0.3,0.6,0.12,…],因此整个数据无形中就增加了一个维度,变成了[batch_size, sequence_length, embedding_size]

之后使用unsqueeze(1)函数使数据增加一个维度,变成[batch_size, 1, sequence_length, embedding_size]。现在的数据才能做卷积,因为在传统CNN中,输入数据就应该是[batch_size, in_channel, height, width]这种维度

TextCNN的PyTorch实现

[batch_size, 1, 3, 2]的输入数据通过nn.Conv2d(1, 3, (2, 2))的卷积之后,得到的就是[batch_size, 3, 2, 1]的数据,由于经过ReLU激活函数是不改变维度的,所以就没画出来。最后经过一个nn.MaxPool2d((2, 1))池化,得到的数据维度就是[batch_size, 3, 1, 1]

TextCNN的PyTorch实现

训练

model = TextCNN().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)

# Training
for epoch in range(5000):
  for batch_x, batch_y in loader:
    batch_x, batch_y = batch_x.to(device), batch_y.to(device)
    pred = model(batch_x)
    loss = criterion(pred, batch_y)
    if (epoch + 1) % 1000 == 0:
        print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

测试

# Test
test_text = 'i hate me'
tests = [[word2idx[n] for n in test_text.split()]]
test_batch = torch.LongTensor(tests).to(device)
# Predict
model = model.eval()
predict = model(test_batch).data.max(1, keepdim=True)[1]
if predict[0][0] == 0:
    print(test_text,"is Bad Mean...")
else:
    print(test_text,"is Good Mean!!")

完整代码如下:

'''
  code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
'''
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
import torch.nn.functional as F

dtype = torch.FloatTensor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 3 words sentences (=sequence_length is 3)
sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
labels = [1, 1, 1, 0, 0, 0]  # 1 is good, 0 is not good.

# TextCNN Parameter
embedding_size = 2
sequence_length = len(sentences[0]) # every sentences contains sequence_length(=3) words
num_classes = 2  # 0 or 1
batch_size = 3

word_list = " ".join(sentences).split()
vocab = list(set(word_list))
word2idx = {w: i for i, w in enumerate(vocab)}
vocab_size = len(vocab)

def make_data(sentences, labels):
  inputs = []
  for sen in sentences:
      inputs.append([word2idx[n] for n in sen.split()])

  targets = []
  for out in labels:
      targets.append(out) # To using Torch Softmax Loss function
  return inputs, targets

input_batch, target_batch = make_data(sentences, labels)
input_batch, target_batch = torch.LongTensor(input_batch), torch.LongTensor(target_batch)

dataset = Data.TensorDataset(input_batch, target_batch)
loader = Data.DataLoader(dataset, batch_size, True)

class TextCNN(nn.Module):
    def __init__(self):
        super(TextCNN, self).__init__()
        self.W = nn.Embedding(vocab_size, embedding_size)
        output_channel = 3
        self.conv = nn.Sequential(
            # conv : [input_channel(=1), output_channel, (filter_height, filter_width), stride=1]
            nn.Conv2d(1, output_channel, (2, embedding_size)),
            nn.ReLU(),
            # pool : ((filter_height, filter_width))
            nn.MaxPool2d((2, 1)),
        )
        # fc
        self.fc = nn.Linear(output_channel, num_classes)

    def forward(self, X):
      '''
      X: [batch_size, sequence_length]
      '''
      batch_size = X.shape[0]
      embedding_X = self.W(X) # [batch_size, sequence_length, embedding_size]
      embedding_X = embedding_X.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size]
      conved = self.conv(embedding_X) # [batch_size, output_channel, 1, 1]
      flatten = conved.view(batch_size, -1) # [batch_size, output_channel*1*1]
      output = self.fc(flatten)
      return output

model = TextCNN().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)

# Training
for epoch in range(5000):
  for batch_x, batch_y in loader:
    batch_x, batch_y = batch_x.to(device), batch_y.to(device)
    pred = model(batch_x)
    loss = criterion(pred, batch_y)
    if (epoch + 1) % 1000 == 0:
        print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
# Test
test_text = 'i hate me'
tests = [[word2idx[n] for n in test_text.split()]]
test_batch = torch.LongTensor(tests).to(device)
# Predict
model = model.eval()
predict = model(test_batch).data.max(1, keepdim=True)[1]
if predict[0][0] == 0:
    print(test_text,"is Bad Mean...")
else:
    print(test_text,"is Good Mean!!")

如果你仔细看过我参考的源码,就会发现他写的很奇怪

for filter_size in filter_sizes:
            # conv : [input_channel(=1), output_channel(=3), (filter_height, filter_width), bias_option]
            conv = nn.Conv2d(1, num_filters, (filter_size, embedding_size), bias=True)(embedded_chars)
            h = F.relu(conv)
            # mp : ((filter_height, filter_width))
            mp = nn.MaxPool2d((sequence_length - filter_size + 1, 1))
            # pooled : [batch_size(=6), output_height(=1), output_width(=1), output_channel(=3)]
            pooled = mp(h).permute(0, 3, 2, 1)
            pooled_outputs.append(pooled)

他使用了一个循环,对原始数据做了多次卷积,得到多个feature map。这个做法奇怪在于,如果说想要得到更多feature map,修改nn.Conv2d()中output_channel参数即可,为什么要这样做多次循环?

如果作者本来的意思是想搞一个深层卷积神经网络,也说不通,因为他这个写法就没有这样的效果,他的循环始终是对原始输入数据做运算,而不是对卷积后的数据再运算

本文地址:https://blog.csdn.net/qq_37236745/article/details/107077050