欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

基于HAL库用STM32CubeMx生成FATFs+sd+flash

程序员文章站 2022-07-05 11:28:01
...

用stm32cubemx生成初始化代码

这里用的是正点原子的f429开发板

  1. 初始化串口
  2. 初始化SPI5
  3. 初始化SDIO
  4. 上面初始化都使用默认配置
  5. 初始化PF6(FLASH的片选引脚)-》上拉,初始化高电平

配置FATFS

基于HAL库用STM32CubeMx生成FATFs+sd+flash

基于HAL库用STM32CubeMx生成FATFs+sd+flash基于HAL库用STM32CubeMx生成FATFs+sd+flash
不用管,继续生成
基于HAL库用STM32CubeMx生成FATFs+sd+flash
刚忘记配置两个LED用来指示单片机状态有没有死机,
好了,继续生成

接下来移植正点原子的SYSTEM+MALLOC+W25QXX

基于HAL库用STM32CubeMx生成FATFs+sd+flash
下面我把修改过的代码贴出来

所用的头文件放到main.h里面去,方便使用

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "w25qxx.h"
#include "delay.h"
#include "sys.h"
#include "malloc.h"	   
/* USER CODE END Includes */

串口初始化代码里面先添加PRINTF的支持代码 别忘记了头文件的支持

#include "stdio.h"	

/* USER CODE BEGIN 1 */
#if 1
#pragma import(__use_no_semihosting)             
//标准库需要的支持函数                 
struct __FILE 
{ 
	int handle; 
}; 

FILE __stdout;       
//定义_sys_exit()以避免使用半主机模式    
void _sys_exit(int x) 
{ 
	x = x; 
} 
//重定义fputc函数 
int fputc(int ch, FILE *f)
{ 	
	while((USART1->SR&0X40)==0);//循环发送,直到发送完毕   
	USART1->DR = (uint8_t) ch;      
	return ch;
}
#endif 

/* USER CODE END 1 */

这里是W25QXX的驱动代码。里面包括了spi的读写函数

#include "w25qxx.h"
#include "spi.h"
#include "delay.h"
#include "stm32f4xx_hal_gpio.h"


u16 W25QXX_TYPE=W25Q256;	//默认是W25Q256

//4Kbytes为一个Sector
//16个扇区为1个Block
//W25Q256
//容量为32M字节,共有512个Block,8192个Sector 
		


//SPI速度设置函数
//SPI速度=fAPB1/分频系数
//@ref SPI_BaudRate_Prescaler:SPI_BAUDRATEPRESCALER_2~SPI_BAUDRATEPRESCALER_2 256
//fAPB1时钟一般为45Mhz:
void SPI5_SetSpeed(u8 SPI_BaudRatePrescaler)
{
    assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_BaudRatePrescaler));//判断有效性
    __HAL_SPI_DISABLE(&hspi5);            //关闭SPI
    hspi5.Instance->CR1&=0XFFC7;          //位3-5清零,用来设置波特率
    hspi5.Instance->CR1|=SPI_BaudRatePrescaler;//设置SPI速度
    __HAL_SPI_ENABLE(&hspi5);             //使能SPI
    
}

//SPI5 读写一个字节
//TxData:要写入的字节
//返回值:读取到的字节
u8 SPI5_ReadWriteByte(u8 TxData)
{
    u8 Rxdata;
    HAL_SPI_TransmitReceive(&hspi5,&TxData,&Rxdata,1, 1000);       
 	return Rxdata;          		    //返回收到的数据		
}

//初始化SPI FLASH的IO口
void W25QXX_Init(void)
{ 
    u8 temp;

	W25QXX_CS=1;			                //SPI FLASH不选中
	SPI5_SetSpeed(SPI_BAUDRATEPRESCALER_8); //设置为45M时钟,高速模式
	W25QXX_TYPE=W25QXX_ReadID();	        //读取FLASH ID.
    if(W25QXX_TYPE==W25Q256)                //SPI FLASH为W25Q256
    {
        temp=W25QXX_ReadSR(3);              //读取状态寄存器3,判断地址模式
        if((temp&0X01)==0)			        //如果不是4字节地址模式,则进入4字节地址模式
		{
			W25QXX_CS=0; 			        //选中
			SPI5_ReadWriteByte(W25X_Enable4ByteAddr);//发送进入4字节地址模式指令   
			W25QXX_CS=1;       		        //取消片选   
		}
    }
}  

//读取W25QXX的状态寄存器,W25QXX一共有3个状态寄存器
//状态寄存器1:
//BIT7  6   5   4   3   2   1   0
//SPR   RV  TB BP2 BP1 BP0 WEL BUSY
//SPR:默认0,状态寄存器保护位,配合WP使用
//TB,BP2,BP1,BP0:FLASH区域写保护设置
//WEL:写使能锁定
//BUSY:忙标记位(1,忙;0,空闲)
//默认:0x00
//状态寄存器2:
//BIT7  6   5   4   3   2   1   0
//SUS   CMP LB3 LB2 LB1 (R) QE  SRP1
//状态寄存器3:
//BIT7      6    5    4   3   2   1   0
//HOLD/RST  DRV1 DRV0 (R) (R) WPS ADP ADS
//regno:状态寄存器号,范:1~3
//返回值:状态寄存器值
u8 W25QXX_ReadSR(u8 regno)   
{  
	u8 byte=0,command=0; 
    switch(regno)
    {
        case 1:
            command=W25X_ReadStatusReg1;    //读状态寄存器1指令
            break;
        case 2:
            command=W25X_ReadStatusReg2;    //读状态寄存器2指令
            break;
        case 3:
            command=W25X_ReadStatusReg3;    //读状态寄存器3指令
            break;
        default:
            command=W25X_ReadStatusReg1;    
            break;
    }    
	W25QXX_CS=0;                            //使能器件   
	SPI5_ReadWriteByte(command);            //发送读取状态寄存器命令    
	byte=SPI5_ReadWriteByte(0Xff);          //读取一个字节  
	W25QXX_CS=1;                            //取消片选     
	return byte;   
} 
//写W25QXX状态寄存器
void W25QXX_Write_SR(u8 regno,u8 sr)   
{   
    u8 command=0;
    switch(regno)
    {
        case 1:
            command=W25X_WriteStatusReg1;    //写状态寄存器1指令
            break;
        case 2:
            command=W25X_WriteStatusReg2;    //写状态寄存器2指令
            break;
        case 3:
            command=W25X_WriteStatusReg3;    //写状态寄存器3指令
            break;
        default:
            command=W25X_WriteStatusReg1;    
            break;
    }   
	W25QXX_CS=0;                            //使能器件   
	SPI5_ReadWriteByte(command);            //发送写取状态寄存器命令    
	SPI5_ReadWriteByte(sr);                 //写入一个字节  
	W25QXX_CS=1;                            //取消片选     	      
}   
//W25QXX写使能	
//将WEL置位   
void W25QXX_Write_Enable(void)   
{
	W25QXX_CS=0;                            //使能器件   
    SPI5_ReadWriteByte(W25X_WriteEnable);   //发送写使能  
	W25QXX_CS=1;                            //取消片选     	      
} 
//W25QXX写禁止	
//将WEL清零  
void W25QXX_Write_Disable(void)   
{  
	W25QXX_CS=0;                            //使能器件   
    SPI5_ReadWriteByte(W25X_WriteDisable);  //发送写禁止指令    
	W25QXX_CS=1;                            //取消片选     	      
} 

//读取芯片ID
//返回值如下:				   
//0XEF13,表示芯片型号为W25Q80  
//0XEF14,表示芯片型号为W25Q16    
//0XEF15,表示芯片型号为W25Q32  
//0XEF16,表示芯片型号为W25Q64 
//0XEF17,表示芯片型号为W25Q128 	  
//0XEF18,表示芯片型号为W25Q256
u16 W25QXX_ReadID(void)
{
	u16 Temp = 0;	  
	W25QXX_CS=0;				    
	SPI5_ReadWriteByte(0x90);//发送读取ID命令	    
	SPI5_ReadWriteByte(0x00); 	    
	SPI5_ReadWriteByte(0x00); 	    
	SPI5_ReadWriteByte(0x00); 	 			   
	Temp|=SPI5_ReadWriteByte(0xFF)<<8;  
	Temp|=SPI5_ReadWriteByte(0xFF);	 
	W25QXX_CS=1;				    
	return Temp;
}   		    
//读取SPI FLASH  
//在指定地址开始读取指定长度的数据
//pBuffer:数据存储区
//ReadAddr:开始读取的地址(24bit)
//NumByteToRead:要读取的字节数(最大65535)
void W25QXX_Read(u8* pBuffer,u32 ReadAddr,u16 NumByteToRead)   
{ 
 	u16 i;   										    
	W25QXX_CS=0;                            //使能器件   
    SPI5_ReadWriteByte(W25X_ReadData);      //发送读取命令  
    if(W25QXX_TYPE==W25Q256)                //如果是W25Q256的话地址为4字节的,要发送最高8位
    {
        SPI5_ReadWriteByte((u8)((ReadAddr)>>24));    
    }
    SPI5_ReadWriteByte((u8)((ReadAddr)>>16));   //发送24bit地址    
    SPI5_ReadWriteByte((u8)((ReadAddr)>>8));   
    SPI5_ReadWriteByte((u8)ReadAddr);   
    for(i=0;i<NumByteToRead;i++)
	{ 
        pBuffer[i]=SPI5_ReadWriteByte(0XFF);    //循环读数  
    }
	W25QXX_CS=1;  				    	      
}  
//SPI在一页(0~65535)内写入少于256个字节的数据
//在指定地址开始写入最大256字节的数据
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)
//NumByteToWrite:要写入的字节数(最大256),该数不应该超过该页的剩余字节数!!!	 
void W25QXX_Write_Page(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)
{
 	u16 i;  
    W25QXX_Write_Enable();                  //SET WEL 
	W25QXX_CS=0;                            //使能器件   
    SPI5_ReadWriteByte(W25X_PageProgram);   //发送写页命令   
    if(W25QXX_TYPE==W25Q256)                //如果是W25Q256的话地址为4字节的,要发送最高8位
    {
        SPI5_ReadWriteByte((u8)((WriteAddr)>>24)); 
    }
    SPI5_ReadWriteByte((u8)((WriteAddr)>>16)); //发送24bit地址    
    SPI5_ReadWriteByte((u8)((WriteAddr)>>8));   
    SPI5_ReadWriteByte((u8)WriteAddr);   
    for(i=0;i<NumByteToWrite;i++)SPI5_ReadWriteByte(pBuffer[i]);//循环写数  
	W25QXX_CS=1;                            //取消片选 
	W25QXX_Wait_Busy();					   //等待写入结束
} 
//无检验写SPI FLASH 
//必须确保所写的地址范围内的数据全部为0XFF,否则在非0XFF处写入的数据将失败!
//具有自动换页功能 
//在指定地址开始写入指定长度的数据,但是要确保地址不越界!
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)
//NumByteToWrite:要写入的字节数(最大65535)
//CHECK OK
void W25QXX_Write_NoCheck(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)   
{ 			 		 
	u16 pageremain;	   
	pageremain=256-WriteAddr%256; //单页剩余的字节数		 	    
	if(NumByteToWrite<=pageremain)pageremain=NumByteToWrite;//不大于256个字节
	while(1)
	{	   
		W25QXX_Write_Page(pBuffer,WriteAddr,pageremain);
		if(NumByteToWrite==pageremain)break;//写入结束了
	 	else //NumByteToWrite>pageremain
		{
			pBuffer+=pageremain;
			WriteAddr+=pageremain;	

			NumByteToWrite-=pageremain;			  //减去已经写入了的字节数
			if(NumByteToWrite>256)pageremain=256; //一次可以写入256个字节
			else pageremain=NumByteToWrite; 	  //不够256个字节了
		}
	};	    
} 
//写SPI FLASH  
//在指定地址开始写入指定长度的数据
//该函数带擦除操作!
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)						
//NumByteToWrite:要写入的字节数(最大65535)   
u8 W25QXX_BUFFER[4096];		 
void W25QXX_Write(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)   
{ 
	u32 secpos;
	u16 secoff;
	u16 secremain;	   
 	u16 i;    
	u8 * W25QXX_BUF;	  
   	W25QXX_BUF=W25QXX_BUFFER;	     
 	secpos=WriteAddr/4096;//扇区地址  
	secoff=WriteAddr%4096;//在扇区内的偏移
	secremain=4096-secoff;//扇区剩余空间大小   
 	//printf("ad:%X,nb:%X\r\n",WriteAddr,NumByteToWrite);//测试用
 	if(NumByteToWrite<=secremain)secremain=NumByteToWrite;//不大于4096个字节
	while(1) 
	{	
		W25QXX_Read(W25QXX_BUF,secpos*4096,4096);//读出整个扇区的内容
		for(i=0;i<secremain;i++)//校验数据
		{
			if(W25QXX_BUF[secoff+i]!=0XFF)break;//需要擦除  	  
		}
		if(i<secremain)//需要擦除
		{
			W25QXX_Erase_Sector(secpos);//擦除这个扇区
			for(i=0;i<secremain;i++)	   //复制
			{
				W25QXX_BUF[i+secoff]=pBuffer[i];	  
			}
			W25QXX_Write_NoCheck(W25QXX_BUF,secpos*4096,4096);//写入整个扇区  

		}else W25QXX_Write_NoCheck(pBuffer,WriteAddr,secremain);//写已经擦除了的,直接写入扇区剩余区间. 				   
		if(NumByteToWrite==secremain)break;//写入结束了
		else//写入未结束
		{
			secpos++;//扇区地址增1
			secoff=0;//偏移位置为0 	 

		   	pBuffer+=secremain;  //指针偏移
			WriteAddr+=secremain;//写地址偏移	   
		   	NumByteToWrite-=secremain;				//字节数递减
			if(NumByteToWrite>4096)secremain=4096;	//下一个扇区还是写不完
			else secremain=NumByteToWrite;			//下一个扇区可以写完了
		}	 
	};	 
}
//擦除整个芯片		  
//等待时间超长...
void W25QXX_Erase_Chip(void)   
{                                   
    W25QXX_Write_Enable();                  //SET WEL 
    W25QXX_Wait_Busy();   
  	W25QXX_CS=0;                            //使能器件   
    SPI5_ReadWriteByte(W25X_ChipErase);        //发送片擦除命令  
	W25QXX_CS=1;                            //取消片选     	      
	W25QXX_Wait_Busy();   				   //等待芯片擦除结束
}   
//擦除一个扇区
//Dst_Addr:扇区地址 根据实际容量设置
//擦除一个扇区的最少时间:150ms
void W25QXX_Erase_Sector(u32 Dst_Addr)   
{  
	//监视falsh擦除情况,测试用   
 	//printf("fe:%x\r\n",Dst_Addr);	  
 	Dst_Addr*=4096;
    W25QXX_Write_Enable();                  //SET WEL 	 
    W25QXX_Wait_Busy();   
  	W25QXX_CS=0;                            //使能器件   
    SPI5_ReadWriteByte(W25X_SectorErase);   //发送扇区擦除指令 
    if(W25QXX_TYPE==W25Q256)                //如果是W25Q256的话地址为4字节的,要发送最高8位
    {
        SPI5_ReadWriteByte((u8)((Dst_Addr)>>24)); 
    }
    SPI5_ReadWriteByte((u8)((Dst_Addr)>>16));  //发送24bit地址    
    SPI5_ReadWriteByte((u8)((Dst_Addr)>>8));   
    SPI5_ReadWriteByte((u8)Dst_Addr);  
	W25QXX_CS=1;                            //取消片选     	      
    W25QXX_Wait_Busy();   				    //等待擦除完成
}  
//等待空闲
void W25QXX_Wait_Busy(void)   
{   
	while((W25QXX_ReadSR(1)&0x01)==0x01);   // 等待BUSY位清空
}  
//进入掉电模式
void W25QXX_PowerDown(void)   
{ 
  	W25QXX_CS=0;                            //使能器件   
    SPI5_ReadWriteByte(W25X_PowerDown);     //发送掉电命令  
	W25QXX_CS=1;                            //取消片选     	      
    delay_us(3);                            //等待TPD  
}   
//唤醒
void W25QXX_WAKEUP(void)   
{  
  	W25QXX_CS=0;                                //使能器件   
    SPI5_ReadWriteByte(W25X_ReleasePowerDown);  //  send W25X_PowerDown command 0xAB    
	W25QXX_CS=1;                                //取消片选     	      
    delay_us(3);                                //等待TRES1
}   

上面的都是一些准备工作,其实到现在SD卡的文件系统已经移植完成了,因为生成的默认配置好了读写函数还有文件系统的配置,只需要挂载就能使用
下面我们来移植FLASH的文件系统的底层驱动

user_diskio.c添加flash的驱动代码

/**
 ******************************************************************************
  * @file    bsp_driver_sd.c for F4 (based on stm324x9i_eval_sd.c)
  * @brief   This file includes a generic uSD card driver.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under Ultimate Liberty license
  * SLA0044, the "License"; You may not use this file except in compliance with
  * the License. You may obtain a copy of the License at:
  *                             www.st.com/SLA0044
  *
  ******************************************************************************
  */

#ifdef OLD_API
/* kept to avoid issue when migrating old projects. */
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */
#else
/* USER CODE BEGIN FirstSection */
/* can be used to modify / undefine following code or add new definitions */
/* USER CODE END FirstSection */
/* Includes ------------------------------------------------------------------*/
#include "bsp_driver_sd.h"

/* Extern variables ---------------------------------------------------------*/ 
  
extern SD_HandleTypeDef hsd;

/* USER CODE BEGIN BeforeInitSection */
/* can be used to modify / undefine following code or add code */
/* USER CODE END BeforeInitSection */
/**
  * @brief  Initializes the SD card device.
  * @retval SD status
  */
uint8_t BSP_SD_Init(void)
{
  uint8_t sd_state = MSD_OK;
  /* Check if the SD card is plugged in the slot */
  if (BSP_SD_IsDetected() != SD_PRESENT)
  {
    return MSD_ERROR;
  }
  /* HAL SD initialization */
  sd_state = HAL_SD_Init(&hsd);
  /* Configure SD Bus width (4 bits mode selected) */
  if (sd_state == MSD_OK)
  {
    /* Enable wide operation */
    if (HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B) != HAL_OK)
    {
      sd_state = MSD_ERROR;
    }
  }

  return sd_state;
}
/* USER CODE BEGIN AfterInitSection */
/* can be used to modify previous code / undefine following code / add code */
/* USER CODE END AfterInitSection */

/**
  * @brief  Configures Interrupt mode for SD detection pin.
  * @retval Returns 0 in success otherwise 1. 
  */
uint8_t BSP_SD_ITConfig(void)
{  
  /* TBI: add user code here depending on the hardware configuration used */
  
  return (uint8_t)0;
}

/** @brief  SD detect IT treatment
  */
void BSP_SD_DetectIT(void)
{
  /* TBI: add user code here depending on the hardware configuration used */
}

/** @brief  SD detect IT detection callback
  */
__weak void BSP_SD_DetectCallback(void)
{
  /* NOTE: This function Should not be modified, when the callback is needed,
     the BSP_SD_DetectCallback could be implemented in the user file
  */ 
}

/* USER CODE BEGIN BeforeReadBlocksSection */
/* can be used to modify previous code / undefine following code / add code */
/* USER CODE END BeforeReadBlocksSection */
/**
  * @brief  Reads block(s) from a specified address in an SD card, in polling mode.
  * @param  pData: Pointer to the buffer that will contain the data to transmit
  * @param  ReadAddr: Address from where data is to be read  
  * @param  NumOfBlocks: Number of SD blocks to read 
  * @param  Timeout: Timeout for read operation
  * @retval SD status
  */
uint8_t BSP_SD_ReadBlocks(uint32_t *pData, uint32_t ReadAddr, uint32_t NumOfBlocks, uint32_t Timeout)
{
  uint8_t sd_state = MSD_OK;
  
  if (HAL_SD_ReadBlocks(&hsd, (uint8_t *)pData, ReadAddr, NumOfBlocks, Timeout) != HAL_OK)
  {
    sd_state = MSD_ERROR;
  }

  return sd_state;  
}

/* USER CODE BEGIN BeforeWriteBlocksSection */
/* can be used to modify previous code / undefine following code / add code */
/* USER CODE END BeforeWriteBlocksSection */
/**
  * @brief  Writes block(s) to a specified address in an SD card, in polling mode. 
  * @param  pData: Pointer to the buffer that will contain the data to transmit
  * @param  WriteAddr: Address from where data is to be written
  * @param  NumOfBlocks: Number of SD blocks to write
  * @param  Timeout: Timeout for write operation
  * @retval SD status
  */
uint8_t BSP_SD_WriteBlocks(uint32_t *pData, uint32_t WriteAddr, uint32_t NumOfBlocks, uint32_t Timeout)
{
  uint8_t sd_state = MSD_OK;
  
  if (HAL_SD_WriteBlocks(&hsd, (uint8_t *)pData, WriteAddr, NumOfBlocks, Timeout) != HAL_OK) 
  {
    sd_state = MSD_ERROR;
  }

  return sd_state;  
}

/* USER CODE BEGIN BeforeReadDMABlocksSection */
/* can be used to modify previous code / undefine following code / add code */
/* USER CODE END BeforeReadDMABlocksSection */
/**
  * @brief  Reads block(s) from a specified address in an SD card, in DMA mode.
  * @param  pData: Pointer to the buffer that will contain the data to transmit
  * @param  ReadAddr: Address from where data is to be read
  * @param  NumOfBlocks: Number of SD blocks to read 
  * @retval SD status
  */
uint8_t BSP_SD_ReadBlocks_DMA(uint32_t *pData, uint32_t ReadAddr, uint32_t NumOfBlocks)
{
  uint8_t sd_state = MSD_OK;
  
  /* Read block(s) in DMA transfer mode */
  if (HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t *)pData, ReadAddr, NumOfBlocks) != HAL_OK)
  {
    sd_state = MSD_ERROR;
  }
  
  return sd_state; 
}

/* USER CODE BEGIN BeforeWriteDMABlocksSection */
/* can be used to modify previous code / undefine following code / add code */
/* USER CODE END BeforeWriteDMABlocksSection */
/**
  * @brief  Writes block(s) to a specified address in an SD card, in DMA mode.
  * @param  pData: Pointer to the buffer that will contain the data to transmit
  * @param  WriteAddr: Address from where data is to be written
  * @param  NumOfBlocks: Number of SD blocks to write 
  * @retval SD status
  */
uint8_t BSP_SD_WriteBlocks_DMA(uint32_t *pData, uint32_t WriteAddr, uint32_t NumOfBlocks)
{
  uint8_t sd_state = MSD_OK;
  
  /* Write block(s) in DMA transfer mode */
  if (HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t *)pData, WriteAddr, NumOfBlocks) != HAL_OK)
  {
    sd_state = MSD_ERROR;
  }
  
  return sd_state; 
}

/* USER CODE BEGIN BeforeEraseSection */
/* can be used to modify previous code / undefine following code / add code */
/* USER CODE END BeforeEraseSection */
/**
  * @brief  Erases the specified memory area of the given SD card. 
  * @param  StartAddr: Start byte address
  * @param  EndAddr: End byte address
  * @retval SD status
  */
uint8_t BSP_SD_Erase(uint32_t StartAddr, uint32_t EndAddr)
{
  uint8_t sd_state = MSD_OK;
  
  if (HAL_SD_Erase(&hsd, StartAddr, EndAddr) != HAL_OK)  
  {
    sd_state = MSD_ERROR;
  }

  return sd_state;
}

/* USER CODE BEGIN BeforeHandlersSection */
/* can be used to modify previous code / undefine following code / add code */
/* USER CODE END BeforeHandlersSection */
/**
  * @brief  Handles SD card interrupt request.
  */
void BSP_SD_IRQHandler(void)
{
  HAL_SD_IRQHandler(&hsd);
}

/**
  * @brief  Handles SD DMA Tx transfer interrupt request.
  */
void BSP_SD_DMA_Tx_IRQHandler(void)
{
  HAL_DMA_IRQHandler(hsd.hdmatx); 
}

/**
  * @brief  Handles SD DMA Rx transfer interrupt request.
  */
void BSP_SD_DMA_Rx_IRQHandler(void)
{
  HAL_DMA_IRQHandler(hsd.hdmarx);
}

/**
  * @brief  Gets the current SD card data status.
  * @param  None
  * @retval Data transfer state.
  *          This value can be one of the following values:
  *            @arg  SD_TRANSFER_OK: No data transfer is acting
  *            @arg  SD_TRANSFER_BUSY: Data transfer is acting
  */
uint8_t BSP_SD_GetCardState(void)
{
  return ((HAL_SD_GetCardState(&hsd) == HAL_SD_CARD_TRANSFER ) ? SD_TRANSFER_OK : SD_TRANSFER_BUSY);
}

/**
  * @brief  Get SD information about specific SD card.
  * @param  CardInfo: Pointer to HAL_SD_CardInfoTypedef structure
  * @retval None 
  */
void BSP_SD_GetCardInfo(HAL_SD_CardInfoTypeDef *CardInfo)
{
  /* Get SD card Information */
  HAL_SD_GetCardInfo(&hsd, CardInfo);
}

/* USER CODE BEGIN BeforeCallBacksSection */
/* can be used to modify previous code / undefine following code / add code */
/* USER CODE END BeforeCallBacksSection */
/**
  * @brief SD Abort callbacks
  * @param hsd: SD handle
  * @retval None
  */
void HAL_SD_AbortCallback(SD_HandleTypeDef *hsd)
{
  BSP_SD_AbortCallback();
}

/**
  * @brief Tx Transfer completed callback
  * @param hsd: SD handle
  * @retval None
  */
void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsd)
{
  BSP_SD_WriteCpltCallback();
}

/**
  * @brief Rx Transfer completed callback
  * @param hsd: SD handle
  * @retval None
  */
void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsd)
{
  BSP_SD_ReadCpltCallback();
}

/* USER CODE BEGIN CallBacksSection_C */
/**
  * @brief BSP SD Abort callback
  * @retval None
  */
__weak void BSP_SD_AbortCallback(void)
{

}

/**
  * @brief BSP Tx Transfer completed callback
  * @retval None
  */
__weak void BSP_SD_WriteCpltCallback(void)
{

}

/**
  * @brief BSP Rx Transfer completed callback
  * @retval None
  */
__weak void BSP_SD_ReadCpltCallback(void)
{

}
/* USER CODE END CallBacksSection_C */
#endif

/**
 * @brief  Detects if SD card is correctly plugged in the memory slot or not.
 * @param  None
 * @retval Returns if SD is detected or not
 */
uint8_t BSP_SD_IsDetected(void)
{
  __IO uint8_t status = SD_PRESENT;

  /* USER CODE BEGIN 1 */
  /* user code can be inserted here */
  /* USER CODE END 1 */    	

  return status;
}

/* USER CODE BEGIN AdditionalCode */
/* user code can be inserted here */
/* USER CODE END AdditionalCode */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

主函数里面的测试代码

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under Ultimate Liberty license
  * SLA0044, the "License"; You may not use this file except in compliance with
  * the License. You may obtain a copy of the License at:
  *                             www.st.com/SLA0044
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"
#include "sdio.h"
#include "spi.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
FATFS fs;
FATFS fs1;
FIL fp;
FIL fp1;
uint8_t word[50]={0};
UINT bw,br;			//读写变量
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
	uint8_t res=0;
  /* USER CODE END 1 */
  

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */
delay_init(180);
  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_SDIO_SD_Init();
  MX_SPI5_Init();
  MX_USART1_UART_Init();
  MX_FATFS_Init();
  /* USER CODE BEGIN 2 */
	res=f_mount(&fs1,(TCHAR const*)"0:",1); //挂载sd卡
	printf("f_mount(&fs,0:,1); res=%d\r\n",res);
	printf("\r\n");
	res=f_mount(&fs,(TCHAR const*)"1:",1);  //挂载FLASH卡
	printf("f_mount(&fs,1:,1);  res=%d\r\n",res);
	printf("\r\n");

	res=f_open(&fp,"0:test.txt",FA_WRITE|FA_CREATE_ALWAYS);//打开sd卡的文件,如果找不到文件就创建
	printf("0:   f_open res=%d\r\n",res);

	
	res=f_write(&fp,"FATFS SDCARD IS SUCCESS!!!YES",sizeof("FATFS SDCARD IS SUCCESS!!!YES"),&bw);//打开文件往里面写入数据,测试写入是否正常
	printf("\r\n");
	if(res)
	{
		printf("0:   Write Error:%d\r\n",res);   
	}else printf("0:   Writed data len:%d\r\n",bw);
		printf("0:   Write data over.\r\n");
	res=f_close(&fp);//写完之后记得关闭文件,不然貌似会丢失
	printf("0:    f_close res=%d\r\n",res);

	printf("\r\n");
	res=f_open(&fp,"1:FLASHTEST.txt",FA_OPEN_ALWAYS|FA_WRITE);//打开FLASH卡的文件,如果找不到文件就创建
	printf("1:   f_open res=%d\r\n",res);

	res=f_write(&fp,"OK FATFS SDCARD IS SUCCESS!!!",sizeof("OK FATFS SDCARD IS SUCCESS!!!"),&bw);;//打开文件往里面写入数据,测试写入是否正常
	if(res)
	{
	printf("1:   Write Error:%d\r\n",res);   
	}else printf("1:   Writed data len:%d\r\n",bw);
	printf("1:   Write data over.\r\n");
	res=f_close(&fp);//写完之后记得关闭文件,不然貌似会丢失
	printf("1:  f_close res=%d\r\n",res);
	printf("\r\n");
	
	res=f_open(&fp,"1:FLASHTEST.txt",FA_READ);//打开FLASH的文件,只读模式,如果上面测试创建失败就打不来
	printf("1:   f_open res=%d\r\n",res);
	res=f_read(&fp,word,50,&br);
	printf("1:  read data len:%d\r\n",bw);
	printf("1:  f_read 1 res=%d\r\n",res);
	res=f_close(&fp);
	printf("1:  f_close res=%d\r\n",res);
	printf("1:  read:%s\r\n",word);
	printf("\r\n");

	
	res=f_open(&fp1,"0:test.txt",FA_READ);//打开sd卡的文件,只读模式,如果上面测试创建失败就打不来
	printf("0:   f_open res=%d\r\n",res);
	res=f_read(&fp1,word,50,&br);

	printf("0:  read data len:%d\r\n",br);
	printf("0:  f_read 0 res=%d\r\n",res);

	res=f_close(&fp1);
	printf("0:  f_close res=%d\r\n",res);
	printf("0:  read:%s\r\n",word);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	 HAL_GPIO_TogglePin(GPIOB, LED0_Pin|LED1_Pin);
		HAL_Delay(500);
		
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage 
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 180;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 8;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Activate the Over-Drive mode 
  */
  if (HAL_PWREx_EnableOverDrive() != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{ 
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

串口助手打印的提示信息

基于HAL库用STM32CubeMx生成FATFs+sd+flash

移植过程中遇到的问题,

  1. SDIO开启dma传输不知道为什么会卡住一回,挂载,和打开文件都正常,但是写入就会卡住,注意不是卡死,然后过一会写入失败,忘记返回的错误代号是什么了,
  2. 后续添加,突然忘记了