最长公共子序列、最长连续公共子序列、最长递增子序列

  • 2022-07-16 11:41:29

面试中除了排序问题,还会经常出现字符串的子序列问题,这里讲解使用动态规划解决三个常见的子序列问题:
1、最长公共子序列问题(LCS,longest-common-subsequence problem)
2、最长连续公共子序列问题
3、最长递增子序列(LIS,longest-increment-subsequence)

最长公共子序列问题LCS

问题描述:

给定两个序列X=<x1,x2,...,xm>和Y=<y1,y2,...,yn>,求X和Y的最长公共子序列。(子序列可以是不连续的,比如{B,C,D,B}就是{A,B,C,B,D,A,B}的子序列)
例如:输入两个字符串 BDCABA 和 ABCBDAB,字符串 BCBA 和 BDAB 都是是它们的最长公共子序列,则输出它们的长度 4,并打印任意一个子序列。

动态规划

时间复杂度O(M*N),空间复杂度O(M*N)。

在使用动态规划之前先规定一下符号,给定一个序列X=<x1,x2,...,xm>,定义Xi为X的前缀,即Xi=<x1,x2,...,xi>。

在求X=<x1,x2,...,xm>和Y=<y1,y2,...,yn>的一个LCS时,我们需要求解一个或者两个子问题。如果xm=yn,那么我们应该求解xm1=yn1的一个LCS。如果xmyn,我们必须求解两个子问题:求Xm1Y的一个LCS与XYn1的一个LCS。两个LCS中较长的一个,即为X和Y的一个LCS,经过推理可知,这些子情况覆盖了所有可能出现的情况。

所以递推公式为:

最长公共子序列、最长连续公共子序列、最长递增子序列

具体到实际的例子中:

最长公共子序列、最长连续公共子序列、最长递增子序列

代码

public class LCS {

    public static int[][] lengthofLCS(char[] X, char[] Y){
        /* 构造二维数组c[][]记录X[i]和Y[j]的LCS长度 (i,j)是前缀
         * c[i][j]=0; 当 i = j = 0;
         * c[i][j]=c[i-1][j-1]+1; 当 i = j > 0; Xi == Y[i]
         * c[i][j]=max(c[i-1][j],c[i][j+1]); 当 i = j > 0; Xi != Y[i]
         * 需要计算 m*n 个子问题的长度 即 任意c[i][j]的长度
         * -- 填表过程
         */
        int[][]c = new int[X.length+1][Y.length+1];

        // 动态规划计算所有子问题
        for(int i=1;i<=X.length;i++){
            for (int j=1;j<=Y.length;j++){
                if(X[i-1]==Y[j-1]){
                    c[i][j] = c[i-1][j-1]+1;
                }
                else if(c[i-1][j] >= c[i][j-1]){
                    c[i][j] = c[i-1][j];
                }
                else{
                    c[i][j] = c[i][j-1];
                }
            }
        }

        // 打印C数组
        for(int i=0;i<=X.length;i++){
            for (int j=0;j<=Y.length;j++){
                System.out.print(c[i][j]+" ");
            }
            System.out.println();
        }
        return c;
    }
    // 输出LCS序列
    public static void print(int[][] arr, char[] X, char[] Y, int i, int j) {
        if(i == 0 || j == 0)
            return;
        if(X[i-1] == Y[j-1]) {
            System.out.print("element " + X[i-1] + " ");

            print(arr, X, Y, i-1, j-1);
        }else if(arr[i-1][j] >= arr[i][j-1]) {
            print(arr, X, Y, i-1, j);
        }else{
            print(arr, X, Y, i, j-1);
        }
    }
    public static void main(String[] args) {
        // TODO Auto-generated method stub
        char[] x ={'A','B','C','B','D','A','B'}; 
        char[] y ={'B','D','C','A','B','A'}; 
        int[][] c = lengthofLCS(x,y);
        print(c, x, y, x.length, y.length);
    }
}

最长公共连续子序列(最长公共子串)

问题描述

给定两个序列X=<x1,x2,...,xm>和Y=<y1,y2,...,yn>,求X和Y的最长公共公共子序列。(连续子序列必须连续的)
例如:输入两个字符串 acbac和 acaccbabb,则最大连续子串为 “cba”, 则返回长度 3。

动态规划

时间复杂度O(M*N),空间复杂度O(M*N)。

这个 LCS 跟前面说的最长公共子序列的 LCS 不一样,不过也算是 LCS 的一个变体,在 LCS 中,子序列是不必要求连续的,而子串则是 “连续” 的。

我们还是像之前一样 “从后向前” 考虑是否能分解这个问题,类似最长公共子序列的分析,这里,我们使用c[i,j] 表示 以 Xi 和 Yj 结尾的最长公共子串的长度,因为要求子串连续,所以对于 Xi 与 Yj 来讲,它们要么与之前的公共子串构成新的公共子串;要么就是不构成公共子串。故状态转移方程:

最长公共子序列、最长连续公共子序列、最长递增子序列

代码

public class LCString {
    public  static int lengthofLCString(String X, String Y){
        /* 构造二维数组c[][]记录X[i]和Y[j]的LCS长度 (i,j)是前缀
         * c[i][j]=0; 当 i = j = 0;
         * c[i][j]=c[i-1][j-1]+1; 当 i = j > 0; Xi == Y[i]
         * c[i][j]=0; 当 i = j > 0; Xi != Y[i]
         * 需要计算 m*n 个子问题的长度 即 任意c[i][j]的长度
         * -- 填表过程
         */
        int[][]c = new int[X.length()+1][Y.length()+1];
        int maxlen = 0;
        int maxindex = 0;
        for(int i =1;i<=X.length();i++){
            for(int j=1;j<=Y.length();j++){
                if(X.charAt(i-1) == Y.charAt(j-1)){
                    c[i][j] = c[i-1][j-1]+1;
                    if(c[i][j] > maxlen)
                    {
                        maxlen = c[i][j];
                        maxindex = i + 1 - maxlen;
                    }
                }
            }
        }
        return maxlen;
    }

    public static void main(String[] args) {
        String X = "acbac";
        String Y = "acaccbabb";
        System.out.println(lengthofLCString(X,Y)); 
    }
}

最长递增子序列(longest-common-subsequence)

问题描述

给定一个序列X=<x1,x2,...,xm>,求X的最长递增子序列。(子序列可以是不连续的,比如{5,6,7,1,2,8} 的LIS是5,6,7,8

动态规划

时间复杂度O(N^2),空间复杂度O(N)。
DP[i]怎么计算?
遍历所有j < i的元素,检查是否DP[j]+1>DP[i] && arr[j] < arry[i] 若是,则可以更新DP[i]

以{5,6,7,1,2,8} 的LIS是5,6,7,8举例:

最长公共子序列、最长连续公共子序列、最长递增子序列

如何选取DP[5]的值呢?就是在所有8之前的小于8的值(即j < i && arr[j] < arry[i])中,选择dp[j]最大的值,
DP[i] = DP[j] + 1

DP[5] = DP[2] + 1 = 3 + 1 = 4

代码

int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;

for (int i = 1; i < N; i++)
{
   DP[i] = 1;
   prev[i] = -1;

   for (int j = i - 1; j >= 0; j--)
      if (DP[j] + 1 > DP[i] && array[j] < array[i])
      {
         DP[i] = DP[j] + 1;
         prev[i] = j;
      }

   if (DP[i] > maxLength)
   {
      bestEnd = i;
      maxLength = DP[i];
   }
上一篇:P1563 玩具谜题

猜你喜欢