欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

HashMap的性能瓶颈

程序员文章站 2022-07-15 16:25:33
...

今天问到了 HashMap
没回答好
再总结一下
只总结我没有注意的部分
并不完整

解决哈希冲突

开放定址法、再哈希函数法和链地址法
我只想起来 hashMap 默认的 链地址法 不过还好 没把这个忘了 基本牌还是有的

开放定址

开放定址法很简单,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把 key 存放到冲突位置后面的空位置上去。这种方法存在着很多缺点,例如,查找、扩容等,所以我不建议你作为解决哈希冲突的首选。

再哈希

再哈希法顾名思义就是在同义词产生地址冲突时再计算另一个哈希函数地址,直到冲突不再发生,这种方法不易产生 “聚集”,但却增加了计算时间。如果我们不考虑添加元素的时间成本,且对查询元素的要求极高,就可以考虑使用这种算法设计。

链地址法

HashMap 则是综合考虑了所有因素,采用链地址法解决哈希冲突问题。这种方法是采用了数组(哈希表)+ 链表的数据结构,当发生哈希冲突时,就用一个链表结构存储相同 Hash 值的数据。

HashMap 引入了红黑树数据

这是因为链表的长度超过 8 后,红黑树的查询效率要比链表高,所以当链表超过 8 时,HashMap 就会将链表转换为红黑树,这里值得注意的一点是,这时的新增由于存在左旋、右旋效率会降低。
讲到这里,我前面我提到的 “因链表过长而导致的查询时间复杂度高” 的问题,也就迎刃而解了。

新增由于存在左旋、右旋效率会降低。 这个点 没有注意到 以后要记得讲

PUT源码

final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
//1、判断当table为null或者tab的长度为0时,即table尚未初始化,此时通过resize()方法得到初始化的table
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
//1.1、此处通过(n - 1) & hash 计算出的值作为tab的下标i,并另p表示tab[i],也就是该链表第一个节点的位置。并判断p是否为null
            tab[i] = newNode(hash, key, value, null);
//1.1.1、当p为null时,表明tab[i]上没有任何元素,那么接下来就new第一个Node节点,调用newNode方法返回新节点赋值给tab[i]
        else {
//2.1下面进入p不为null的情况,有三种情况:p为链表节点;p为红黑树节点;p是链表节点但长度为临界长度TREEIFY_THRESHOLD,再插入任何元素就要变成红黑树了。
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
//2.1.1HashMap中判断key相同的条件是key的hash相同,并且符合equals方法。这里判断了p.key是否和插入的key相等,如果相等,则将p的引用赋给e

                e = p;
            else if (p instanceof TreeNode)
//2.1.2现在开始了第一种情况,p是红黑树节点,那么肯定插入后仍然是红黑树节点,所以我们直接强制转型p后调用TreeNode.putTreeVal方法,返回的引用赋给e
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
//2.1.3接下里就是p为链表节点的情形,也就是上述说的另外两类情况:插入后还是链表/插入后转红黑树。另外,上行转型代码也说明了TreeNode是Node的一个子类
                for (int binCount = 0; ; ++binCount) {
//我们需要一个计数器来计算当前链表的元素个数,并遍历链表,binCount就是这个计数器

                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) 
// 插入成功后,要判断是否需要转换为红黑树,因为插入后链表长度加1,而binCount并不包含新节点,所以判断时要将临界阈值减1
                            treeifyBin(tab, hash);
//当新长度满足转换条件时,调用treeifyBin方法,将该链表转换为红黑树
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

编码优化点 这个 好像答出来了 我说 hashcode 需要占cpu资源
在编码中也可以优化 HashMap 的性能,例如,重写 key 值的 hashCode() 方法,降低哈希冲突,从而减少链表的产生,高效利用哈希表,达到提高性能的效果。

扩容优化

这个点 忘了 应该 注意 这个是重点

1.7采用数组+单链表,1.8在单链表超过一定长度后改成红黑树存储
1.7扩容时需要重新计算哈希值和索引位置,1.8并不重新计算哈希值,巧妙地采用和扩容后容量进行&操作来计算新的索引位置。
1.7插入元素到单链表中采用头插入法,1.8采用的是尾插入法。

循环链表问题

HashMap在jdk1.7中采用头插入法,在扩容时会改变链表中元素原本的顺序,以至于在并发场景下导致链表成环的问题。而在jdk1.8中采用尾插入法,在扩容时会保持链表元素原本的顺序,就不会出现链表成环的问题了。

JDK1.7 头插法 容易出循环链表问题

在 JDK1.7 中,HashMap 整个扩容过程就是分别取出数组元素,一般该元素是最后一个放入链表中的元素,然后遍历以该元素为头的单向链表元素,依据每个被遍历元素的 hash 值计算其在新数组中的下标,然后进行交换。这样的扩容方式会将原来哈希冲突的单向链表尾部变成扩容后单向链表的头部。

JDK1.8 尾插发不会出现

而在 JDK 1.8 中,HashMap 对扩容操作做了优化。由于扩容数组的长度是 2 倍关系,所以对于假设初始 tableSize = 4 要扩容到 8 来说就是 0100 到 1000 的变化(左移一位就是 2 倍),在扩容中只用判断原来的 hash 值和左移动的一位(newtable 的值)按位与操作是 0 或 1 就行,0 的话索引不变,1 的话索引变成原索引加上扩容前数组。

之所以能通过这种 “与运算 “来重新分配索引,是因为 hash 值本来就是随机的,而 hash 按位与上 newTable 得到的 0(扩容前的索引位置)和 1(扩容前索引位置加上扩容前数组长度的数值索引处)就是随机的,所以扩容的过程就能把之前哈希冲突的元素再随机分布到不同的索引中去。

相关标签: 面试复习