欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Datawhale零基础入门数据挖掘-Task4建模调参

程序员文章站 2022-07-14 10:43:10
...

4.1 学习目标

了解常用的机器学习模型,并掌握机器学习模型的建模与调参流程
完成相应学习打卡任务

4.2 内容介绍

1. 线性回归模型:

线性回归对于特征的要求;
处理长尾分布;
理解线性回归模型;

2. 模型性能验证:

评价函数与目标函数;
交叉验证方法;
留一验证方法;
针对时间序列问题的验证;
绘制学习率曲线;
绘制验证曲线;

3. 嵌入式特征选择:

Lasso回归;
Ridge回归;
决策树;

4. 模型对比:

常用线性模型;
常用非线性模型;

4.3 代码

导包

import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
def reduce_mem_usage(df):
    """ iterate df 的每个特征,修改数据类型,降低内存占用 """
    # 初始 df 的内存占用, sum的结果是 B,除以两个1024,变成 MB
    start_mem = df.memory_usage().sum() / 1024 / 1024 
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        # 对于非object的数值型特征,分别计算该特征的最小值和最大值所占内存的上下界
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            # 如果是整型数据,从占用内存最小的数据类型开始,依次进行数值比较,测试 特征的取值范围 是否在 该数据类型的取值范围里
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64) 
            # 如果是浮点型数据,同样是依次进行比较,但是最小的是float16,而且float32基本上已经足够大,够用了
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        # 对于object型数据,转换为分类型数据,降低内存占用(没有时间型特征,只留了使用天数)
        else:
            df[col] = df[col].astype('category')
    
    # 修改每个特征的数据类型后,df 的内存占用
    end_mem = df.memory_usage().sum()  / 1024 / 1024 
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    return df

读取数据


data = reduce_mem_usage(pd.read_csv('data_for_tree.gz'))
Memory usage of dataframe is 60507328.00 MB 
Memory usage after optimization is: 15724107.00 MB 
Decreased by 74.0% 

4.3.1 线性回归

基础建模

from sklearn.linear_model import LinearRegression
from matplotlib import pyplot as plt
model = LinearRegression(normalize=True)
model = model.fit(train_X, train_y)

plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue')
plt.xlabel('v_9') 
plt.ylabel('price') 
plt.legend(['True Price','Predicted Price'],loc='upper right') 
print('The predicted price is obvious different from true price') 
plt.show()

Datawhale零基础入门数据挖掘-Task4建模调参

import seaborn as sns 
print('It is clear to see the price shows a typical exponential distribution') 
plt.figure(figsize=(15,5)) 
plt.subplot(1,2,1) 
sns.distplot(train_y) 
plt.subplot(1,2,2) 
sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])

Datawhale零基础入门数据挖掘-Task4建模调参
对标签进行????????????(???? + 1) 变换,使标签贴近于正态分布

train_y_ln = np.log(train_y + 1)
import seaborn as sns 
print('It is clear to see the price shows a typical exponential distribution') 
plt.figure(figsize=(15,5)) 
plt.subplot(1,2,1) 
sns.distplot(train_y) 
plt.subplot(1,2,2) 
sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])

Datawhale零基础入门数据挖掘-Task4建模调参

4.3.2 五折交叉验证

from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_absolute_error,  make_scorer
def log_transfer(func):
    def wrapper(y, yhat):
        result = func(np.log(y), np.nan_to_num(np.log(yhat)))
        return result
    return wrapper
scores = cross_val_score(model, X=train_X, y=train_y, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error)))
print('AVG:', np.mean(scores))
scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=1, cv = 5, scoring=make_scorer(mean_absolute_error))
print('AVG:', np.mean(scores))
scores = pd.DataFrame(scores.reshape(1,-1))
scores.columns = ['cv' + str(x) for x in range(1, 6)]
scores.index = ['MAE']
scores

Datawhale零基础入门数据挖掘-Task4建模调参

4.3.3 模拟真实业务情况

绘制学习率曲线与验证曲线

import datetime
sample_feature = sample_feature.reset_index(drop=True)
split_point = len(sample_feature) // 5 * 4
train = sample_feature.loc[:split_point].dropna()
val = sample_feature.loc[split_point:].dropna()

train_X = train[continuous_feature_names]
train_y_ln = np.log(train['price'] + 1)
val_X = val[continuous_feature_names]
val_y_ln = np.log(val['price'] + 1)
model = model.fit(train_X, train_y_ln)
mean_absolute_error(val_y_ln, model.predict(val_X))

from sklearn.model_selection import learning_curve, validation_curve
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,n_jobs=1, train_size=np.linspace(.1, 1.0, 5 )):  
    plt.figure()  
    plt.title(title)  
    if ylim is not None:  
        plt.ylim(*ylim)  
    plt.xlabel('Training example')  
    plt.ylabel('score')  
    train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_size, scoring = make_scorer(mean_absolute_error))  
    train_scores_mean = np.mean(train_scores, axis=1)  
    train_scores_std = np.std(train_scores, axis=1)  
    test_scores_mean = np.mean(test_scores, axis=1)  
    test_scores_std = np.std(test_scores, axis=1)  
    plt.grid()  
    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,  
                     train_scores_mean + train_scores_std, alpha=0.1,  
                     color="r")  
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,  
                     test_scores_mean + test_scores_std, alpha=0.1,  
                     color="g")  
    plt.plot(train_sizes, train_scores_mean, 'o-', color='r',  
             label="Training score")  
    plt.plot(train_sizes, test_scores_mean,'o-',color="g",  
             label="Cross-validation score")  
    plt.legend(loc="best")  
    return plt  

plot_learning_curve(LinearRegression(), 'Liner_model', train_X[:1000], train_y_ln[:1000], ylim=(0.0, 0.5), cv=5, n_jobs=1)  

Datawhale零基础入门数据挖掘-Task4建模调参

4.3.4 多种模型对比

线性模型 & 嵌入式特征选择

train = sample_feature[continuous_feature_names + ['price']].dropna()

train_X = train[continuous_feature_names]
train_y = train['price']
train_y_ln = np.log(train_y + 1)

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
models = [LinearRegression(),
          Ridge(),
          Lasso()]
result = dict()
for model in models:
    model_name = str(model).split('(')[0]
    scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))
    result[model_name] = scores
    print(model_name + ' is finished')

result = pd.DataFrame(result)
result.index = ['cv' + str(x) for x in range(1, 6)]
result

Datawhale零基础入门数据挖掘-Task4建模调参

画出每个特征的重要性大小

model = LinearRegression().fit(train_X, train_y_log)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_features)

Datawhale零基础入门数据挖掘-Task4建模调参

model = LinearRegression(normalize=True).fit(train_X, train_y_log)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_features)

Datawhale零基础入门数据挖掘-Task4建模调参

model = Ridge().fit(train_X, train_y_log)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_features)

Datawhale零基础入门数据挖掘-Task4建模调参

model = Lasso().fit(train_X, train_y_log)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_features)

Datawhale零基础入门数据挖掘-Task4建模调参