欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

通过实例解析JMM和Volatile底层原理

程序员文章站 2022-06-12 11:07:19
这篇文章主要介绍了通过实例解析jmm和volatile底层原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 jmm和volati...

这篇文章主要介绍了通过实例解析jmm和volatile底层原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

jmm和volatile分析

1.jmm:java memory model,java线程内存模型

jmm:它是一个抽象的概念,描述的是线程和内存间的通信,java线程内存模型和cpu缓存模型类似,它是标准化的,用于屏蔽硬件和操作系统对内存访问的差异性。

通过实例解析JMM和Volatile底层原理

2.jmm和8大原子操作结合

通过实例解析JMM和Volatile底层原理

通过实例解析JMM和Volatile底层原理

3.volatile的应用及底层原理探究

volatile : 轻量级的synchronized,在多处理器的开发中保证了共享变量的"可见性"。可见性的意思:当一个线程修改了某个共享变量时,其他使用到该共享变量的线程能够及时读取到修改的值。修饰得当,比synchronized的执行成本更低,因为它不会引起线程上下文切换和调度。

通过实例解析JMM和Volatile底层原理

public class volatiletest {
  private static volatile boolean flag = false;
  public static void main(string[] args) {
    update();
  }

  public static void update(){
    flag = true;
    system.out.println(flag);
  }
}
volatile jit编译器编译java代码为汇编指令查看
1.在jdk\jre\bin\ 目录下添加 hsdis-amd64.lib
2.在jdk1.8\jre\bin\server\目录下添加hsdis-amd64.dll文件
3.在idea中设置 jvm参数
-server -xcomp -xx:+unlockdiagnosticvmoptions -xx:+printassembly -xx:compilecommand=compileonly,volatiletest.update
4.运行java程序即可打印出
compileroracle: compileonly *volatiletest.update
loaded disassembler from e:\eclipsedev\jdk\jdk1.8\jre\bin\server\hsdis-amd64.dll
decoding compiled method 0x000000000f11aad0:
code:
argument 0 is unknown.rip: 0xf11ac40 code size: 0x000002a8
[disassembling for mach='amd64']
[entry point]
[verified entry point]
[constants]
 # {method} {0x0000000008792b78} 'update' '()v' in 'com/yew/test/volatiletest'
 #      [sp+0x40] (sp of caller)
 0x000000000f11ac40: mov   dword ptr [rsp+0ffffffffffffa000h],eax
 0x000000000f11ac47: push  rbp
 0x000000000f11ac48: sub   rsp,30h
 0x000000000f11ac4c: mov   r8,8792d70h    ;  {metadata(method data for {method} {0x0000000008792b78} 'update' '()v' in 'com/yew/test/volatiletest')}
 0x000000000f11ac56: mov   edx,dword ptr [r8+0dch]
 0x000000000f11ac5d: add   edx,8h
 0x000000000f11ac60: mov   dword ptr [r8+0dch],edx
 0x000000000f11ac67: mov   r8,8792b70h    ;  {metadata({method} {0x0000000008792b78} 'update' '()v' in 'com/yew/test/volatiletest')}
 0x000000000f11ac71: and   edx,0h
 0x000000000f11ac74: cmp   edx,0h
 0x000000000f11ac77: je   0f11ad68h     ;*iconst_1
                        ; - com.yew.test.volatiletest::update@0 (line 17)
 0x000000000f11ac7d: mov   r8,0d7b08a30h   ;  {oop(a 'java/lang/class' = 'com/yew/test/volatiletest')}
 0x000000000f11ac87: mov   edx,1h
 0x000000000f11ac8c: mov   byte ptr [r8+68h],dl
volatile修饰
 0x000000000f11ac90: lock add dword ptr [rsp],0h ;*putstatic flag
                        ; - com.yew.test.volatiletest::update@1 (line 17)
无volatile修饰
 0x000000000f113707: mov byte ptr [r8+68h],1h ;*putstatic flag
                        ; - com.yew.test.volatiletest::update@1 (line 17)
通过比较可知:改变共享变量flag的值为true,该变量由volatile修饰,进行汇编打印时,会有lock前缀修饰,根据ia-32架构软件开发者手册可知,lock前缀指令在多核cpu处理器下会引发两件事情:
【1】将当前处理器缓存行的数据立即写回系统内存
【2】wirte操作会使其他处理器中缓存该内存地址的数据无效
lock#声言期间,处理器独占任何共享内存。ia-32处理器和intel 64处理器使用mesi(修改、独占、共享、无效)控制协议去维护内部缓存和其他处理器缓存的一致性。通过嗅探技术保证处理器内部缓存、系统缓存和其他处理器缓存的数据再总线上保持一致。当其他处理器打算回写内存地址,该地址是共享内存区域,那么嗅探的处理器会将它的缓存行设置为无效,下次访问相同内存时,强制执行缓存行填充。
0x000000000f11ac95: nop
 0x000000000f11ac98: jmp   0f11add4h     ;  {no_reloc}
 0x000000000f11ac9d: add   byte ptr [rax],al
 0x000000000f11ac9f: add   byte ptr [rax],al
 0x000000000f11aca1: add   byte ptr [rsi+0fh],ah
 0x000000000f11aca4: fatal error: disassembling failed with error code: 15decoding compiled method 0x000000000f11ef50:
code:
argument 0 is unknown.rip: 0xf11f080 code size: 0x00000058
[entry point]
[verified entry point]
[constants]
 # {method} {0x0000000008792b78} 'update' '()v' in 'com/yew/test/volatiletest'
 #      [sp+0x20] (sp of caller)
 0x000000000f11f080: mov   dword ptr [rsp+0ffffffffffffa000h],eax
 0x000000000f11f087: push  rbp
 0x000000000f11f088: sub   rsp,10h
 0x000000000f11f08c: mov   r10,0d7b08a30h  ;  {oop(a 'java/lang/class' = 'com/yew/test/volatiletest')}
 0x000000000f11f096: mov   byte ptr [r10+68h],1h
 0x000000000f11f09b: lock add dword ptr [rsp],0h ;*putstatic flag
                        ; - com.yew.test.volatiletest::update@1 (line 17)
 0x000000000f11f0a0: mov   edx,1ch
 0x000000000f11f0a5: nop
 0x000000000f11f0a7: call  0f0557a0h     ; oopmap{off=44}
                        ;*getstatic out
                        ; - com.yew.test.volatiletest::update@4 (line 18)
                        ;  {runtime_call}
 0x000000000f11f0ac: int3           ;*getstatic out
                        ; - com.yew.test.volatiletest::update@4 (line 18)
 0x000000000f11f0ad: hlt
 0x000000000f11f0ae: hlt
 0x000000000f11f0af: hlt
 0x000000000f11f0b0: hlt
 0x000000000f11f0b1: hlt
 0x000000000f11f0b2: hlt
 0x000000000f11f0b3: hlt
 0x000000000f11f0b4: hlt
 0x000000000f11f0b5: hlt
 0x000000000f11f0b6: hlt
 0x000000000f11f0b7: hlt
 0x000000000f11f0b8: hlt
 0x000000000f11f0b9: hlt
 0x000000000f11f0ba: hlt
 0x000000000f11f0bb: hlt
 0x000000000f11f0bc: hlt
 0x000000000f11f0bd: hlt
 0x000000000f11f0be: hlt
 0x000000000f11f0bf: hlt
[exception handler]
[stub code]
 0x000000000f11f0c0: jmp   0f0883a0h     ;  {no_reloc}
[deopt handler code]
 0x000000000f11f0c5: call  0f11f0cah
 0x000000000f11f0ca: sub   qword ptr [rsp],5h
 0x000000000f11f0cf: jmp   0f057600h     ;  {runtime_call}
 0x000000000f11f0d4: hlt
 0x000000000f11f0d5: hlt
 0x000000000f11f0d6: hlt
 0x000000000f11f0d7: hlt
true

4.volatile的使用优化

java并发大师doug li在jdk7并发包中新增了一个队列集合linketransferqueue,它在使用volatile关键字修饰变量时,采用追加字节的方式将变量填充到64字节

volatile修饰变量在进行修改时,会进行lock前置指令加锁,锁住缓存行的数据独占

适用于:缓存行字节为64字节 处理器如 i7 酷睿 pentium m等

不适用:非64字节宽的缓存行 p6系列或者奔腾 共享变量不会被频繁的写

5.并发编程的三大特性:可见性、原子性、有序性

volatile可以保证可见性、有序性,但是不保证原子性。

6.volatile关键字的语义分析

(1)保证可见性,volatile修饰的共享变量被修改时,其他处理器能立刻嗅探到共享变量值的改变

(2)保证有序性:根据happens-before原则可知,当变量使用volatile修饰时,程序代码前后的位置不能发生指令重排和提取。

(3)volatile底层采用汇编的lock前缀指令锁定共享变量内存地址的缓存行,从而控制并发的安全性(轻量级synchronized)

7.volatile使用场景以及和synchronized的区别

使用场景:1.标志状态 2.dcl--双重检测锁(单例模式) 3.保证可见性、顺序性

区别:

1.使用上:volatile修饰变量 synchronized修饰方法或者代码块

2.原子性的保证 volatile不保证原子性 synchronized可以保证原子性

3.可见性保证机制不同 volatile通过汇编的lock前缀指令 synchronized使用monitor属性(moniterentet 入口 moniterexit--出口(包含异常))

4.有序性保证的锁的粒度 volatile粒度小,synchronized粒度大

5.其他 volatile不会引起线程阻塞 synchronized会引起线程的阻塞

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。